進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2504201514283300
論文名稱(中文) 應用於微波能量傳輸之寬頻圓極化整流天線的設計
論文名稱(英文) Design of a Broadband Circularly Polarized Rectenna for Applications of Microwave Power Transmission
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 張育涵
研究生(英文) Yu-Han Chang
學號 P18981019
學位類別 博士
語文別 英文
論文頁數 88頁
口試委員 口試委員-江景泰
口試委員-李坤洲
指導教授-李建興
口試委員-洪茂峰
召集委員-陳居毓
口試委員-陳怡然
口試委員-陳立軒
口試委員-黃啟芳
中文關鍵字 寬頻圓極化天線  相位差異器  整流天線 
英文關鍵字 Broadband circularly polarized antenna  phase shifter  rectenna 
學科別分類
中文摘要 本文提出設計一寬頻圓極化整流天線,其應用頻段為4.2至7.6 GHz,該頻段亦為衛星通訊常用之C band(4至8 GHz),所設計之整流天線將能接收到較多不同頻段之訊號能量,且可於未來研究結合微波開關電路,以使該整流天線具有通訊功能。該整流天線所使用之圓極化天線乃是以改良式Schiffman相差器來提供寬頻的90度相位差,因此相差器較容易製作與使用。除此之外,其亦設計一對輻射能量大小相同且相互正交的寬頻線性極化之寬槽孔天線,用以提供垂直及水平極化之輻射能量,進而透過Wilkinson功率分配器將其整合成為一具有不錯的反射損耗頻寬、軸比頻寬、輻射場型、輻射效率以及增益等特性之寬頻圓極化天線。於整流電路設計部分,該整流天線整合一低通濾波器、微波蕭基二極體 (HSMS-2862)、漣波電容以及負載電阻而成,再以雕刻機精細製作完成此寬頻圓極化整流天線,並使用34-dBm之微波能量作為量測源。於量測時,待測天線與量測源之天線的距離為50 cm,此一距離為量測最高頻率之遠場距離,設計該遠場距離乃是寬頻天線中常見的現象。當負載為680 Ω時,吾人測得該整流天線最大微波能量轉換為直流電之效率約為81.6 %,而且所得到之直流電壓約為1.98 V。本文所設計之天線與電路皆使用雙面FR4基板,該板材厚度與相對介電常數分別約為1.6 mm與4.4;而模擬工具則使用包含Ansys HFSS、Microwave office以及Matlab等軟體。
英文摘要 This dissertation presents a broadband circularly polarized rectifying antenna (rectenna) for microwave power transmission at 4.2-7.6 GHz, comprising a broadband circularly polarized (CP) antenna and a rectifier circuit. This antenna finds its application for C band (4 to 8 GHz) that can receive more microwave power at different frequency. Moreover, the designed rectenna can be further researched to combine with microwave switch circuit for data communications. The CP antenna consists of an improved Schiffman phase shifter with easy implementation and use to provide a wideband phase difference of 90°. It also includes a pair of orthogonally positioned linearly polarized (LP) slot antennas with equal radiation strength that are used to accomplish a circular polarization by combining the horizontally and vertically polarized waves with a Wilkinson power divider. The proposed rectenna has an improved design and implementation using a broadband CP antenna that features a size reduction, good axial-ratio bandwidth and good return loss bandwidth. In addition, the rectifier circuit is composed of a microwave Si Schottky detector diode (HSMS-2862), a low-pass filter, a load resistor and a bypass capacitor. The output dc voltage of 1.98 V over a 680 Ω load resistance and the maximum microwave-to-dc conversion efficiency of 81.6 % were measured when a 34-dBm microwave power was transmitted at 5.6 GHz over a distance of 50 cm which was referred as the far field. The designed rectenna was printed on a double-sided FR4 substrate of thickness 1.6 mm with dielectric constant 4.4 and the simulation tools used in this study include Microwave office, Matlab, and Ansys HFSS.
論文目次 摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables vii
List of Figures viii
Nomenclature xii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Description 2
1.3 Literature Review 3
1.4 Contributions of This Dissertation 7
1.5 Outline of This Dissertation 7
Chapter 2 Basic Theorey of Microstrip Lines and Antennas 9
2.1 Introduction 9
2.2 Characteristic Impedance of Microstrip Lines 10
2.3 Plane Waves and Their Polarization 13
2.4 Radiation Pattern and Axial Ratio 16
2.5 Antenna Gain and Efficiency 19
Chapter 3 Introduction of Phase Shifters 23
3.1 Research Direction 23
3.2 Schiffman Phase Shifter 23
3.2.1 Design of the Schiffman Phase Shifter 24
3.2.2 Simulation of the Schiffman Phase Shifter 28
3.3 Experimental Results 31
3.4 Concluding Remarks 32
Chapter 4 Design of a Broadband Linearly Polarized Antenna 35
4.1 Research Direction 35
4.2 Simulations of the Designed Broadband Linearly Polarized Antenna 36
4.2.1 Antenna Design and Geometry 37
4.2.2 Simulated Return Loss 41
4.2.3 Simulated Current Distribution 43
4.2.4 Discussions 45
4.3 Measurements of the Broadband Linearly Polarized Antenna 46
4.3.1 Impedance and Radiation Performances 46
4.3.2 Antenna Gain and Efficiency 48
4.4 Concluding Remarks 49
Chapter 5 Design of a Broadband Circularly Polarized Antenna 50
5.1 Research Direction 50
5.2 Simulations of the Designed Broadband CP Antenna 51
5.2.1 Integration of a LP Antennas and a Phase Shifter 51
5.2.2 Simulation of the Return Loss and Axial Ratio 56
5.2.3 Simulation of the Current Distribution at Each Frequency 58
5.2.4 Discussions 60
5.3 Measurements of the Designed Broadband CP Antenna 60
5.3.1 Fabrication of the Proposed Antenna and the Experimental Setup 60
5.3.2 Impedance, Antenna Gain and Efficiency 61
5.3.3 Radiation Performances of the Designed CP Antenna 63
5.4 Concluding Remarks 66
Chapter 6 Design of a Broadband Circularly Polarized Rectenna 68
6.1 Research Direction 68
6.2 Working Principle of Rectenna 69
6.3 Design of the Broadband CP Rectenna 70
6.3.1 Design of the Broadband CP Antenna at C band 70
6.3.2 Design of the Rectifying Circuit 73
6.3.3 Choice of the Diode for Use in the Rectifying Circuit 74
6.3.4 Simulation of the Diode Efficiency with the Load Resistor 75
6.4 Measurements of the Designed Broadband CP Rectenna 78
6.4.1 Measurement Setup and Limitations 79
6.4.2 DC Conversion Efficiency and Incident Input Power 80
6.4.3 Discussions 81
Chapter 7 Conclusions and Recommendations 83
7.1 Conclusions 83
7.2 Recommendations 84
References 85
參考文獻 [1] W. C. Brown, “The history of power transmission by radio waves,” IEEE Transaction on Microwave Theory and Techniques, vol. MTT-32, pp. 1230-1242, September 1984.
[2] B. M. Schiffman, “A new class of broad-band microwave 90-degree phase shifters,” IRE Transactions on Microwave Theory and Techniques, vol. MTT-6, no. 4, pp. 232-237, April 1958.
[3] Y. J. Ren and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1495-1502, April 2006.
[4] B. Strassner and K. Chang, “5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications,” IEEE Transsactions on Microwave Theory and Techniques, vol. 51, no. 5, pp. 1548-1553, May 2003.
[5] B. Strassner and K. Chang, “5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission,” IEEE Transsactions on Microwave Theory and Techniques, vol. 50, no. 8, pp. 1870-1876, August 2002.
[6] J. Heikkinen and M. Kivikoski, “A novel dual-frequency circularly polarized rectenna,” IEEE Antennas and Wireless Propagation Letters, vol. 2, no. 1, pp. 330-333, February 2003.
[7] W. H. Tu, S. H. Hsu, and K. Chang, “Compact 5.8-GHz rectenna using stepped-impedance dipole antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 282-284, June 2007.
[8] C.-H. K. Chin, Q. Xue, and C. H. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 175-178, June 2005.
[9] J. Heikkinen, and M. Kivikoski, “Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 4, pp. 162-164, April 2004.
[10] J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic´, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Transsactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1014-1024, March 2004.
[11] F. B. Helmbrecht, “A broad-band rectenna array for RF energy recycling,” Diplom-Ingenieur (TU-Munchen) thesis, September 2002.
[12] J. O. McSpadden, T. Yoo, and K. Chang, “Theoretical and experimental investigation of a rectenna element for microwave power transmission,” IEEE Transsactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2359-2366, December 1992.
[13] G. Massie, M. Caillet, M. Clénet, and Y. M. M. Antar, “A new wideband circularly polarized hybrid dielectric resonator antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 347-350, 2010.
[14] K.-W. Khoo, Y.-X. Guo, and L. C. Ong, “Wideband circularly polarized dielectric resonator antenna,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 1929-1932, July 2007.
[15] Y.-M. Pan and K. W. Leung, “Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 563-570, February 2013.
[16] S.-L. S. Yang, A. A. Kishk, and K.-F. Lee, “Wideband circularly polarized antenna with L-shaped slot,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1780-1783, June 2008.
[17] Z.-H. Wu and E. K.-N. Yung, “Wideband circularly polarized vertical patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3420-3425, November 2008.
[18] Y.-X. Guo, K.-W. Khoo, and L. C. Ong, “Wideband circularly polarized patch antenna using broadband baluns,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 2, pp. 319-326, February 2008.
[19] Y.-X. Guo, L. Bian, and X. Q. Shi, “Broadband circularly polarized annular-ring microstrip antenna,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2474-2477, August 2009.
[20] E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission-line filters and directional couplers,” IRE Transactions on Microwave Theory and Techniques, vol. 4, no. 2, pp. 75-81, 1956.
[21] J. L. R. Quirarte and J. P. Starski, “Synthesis of Schiffman phase shifters,” IEEE Transsactions on Microwave Theory and Techniques, vol. 39, no. 11, pp. 1885-1889, November 1991.
[22] J. L. R. Quirarte, and J. P. Starski, “Novel Schiffman phase shifters,” IEEE Transsactions on Microwave Theory and Techniques, vol. 41, no. 1, pp. 9-14, January 1993.
[23] B. Schiek and J. Kohler, “A method for broad-band matching of microstrip differential phase shifters,” IEEE Transsactions on Microwave Theory and Techniques, vol. MTT-25, no. 8, pp. 666-671, August 1977.
[24] Y.-X. Guo, Z.-Y. Zhang, and L. C. Ong, “Improved wide-band Schiffman phase shifter,” IEEE Transsactions on Microwave Theory and Techniques, vol. 54, no. 3, pp. 1196-1200, March 2006.
[25] C.-I. Lin and K.-L. Wong, Comments on “Printed monopole slot antenna for penta-band operation in the folder-type mobile phone,” Microwave and Optical Technology Letters, vol. 50, no. 9, pp. 2237-2242, September 2007.
[26] C. Marchais, G. Le Ray, and A. Sharaiha, , “Stripline slot antenna for UWB communications,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 319-322, May 2006.
[27] H.-D. Chen, “Broadband CPW-fed square slot antennas with a widened tuning stub,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 8, pp. 1982-1986, August 2008.
[28] A. Dastranj, A. Imani, and M. Naser-Moghaddasi, “Printed wide-slot antenna for wideband applications,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 10, pp. 3097-3012, October 2008.
[29] W.-F. Chen, C.-C. Tsai, and C.-Y. Huang, “Compact wide-slot antenna for ultra-wideband communications,” Electronics Letters, vol. 44, no. 15, pp. 892-893, July 2008.
[30] S. K. Sharma, L. Shafai, and N. Jacob, “Investigation of wide-band microstrip slot antenna,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 865-872, March 2004.
[31] C.-H. Lee, Y.-H. Chang and C.-E. Chiou, “Design of multi-band CPW-fed antenna for triple-frequency operation,” Electron. Letters, vol. 48, no. 10, pp. 543-545, May 2012.
[32] C.-H. Lee and Y.-H Chang, “An alternative implementation for fabricating a Schiffman phase shifter,” Microwave and Optical Technology Letters, vol. 55, no. 1, pp. 9-12, January 2013.
[33] C.-H. Lee and Y.-H. Chang, “An improved design and implementation of a broadband circularly polarized antenna,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3343-3348, June 2014.
[34] D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, 2nd Ed., 1998, pp. 131-151.
[35] IEEE Transactions on Antennas and Propagation, vol. AP-17, No. 3, May 1969; AP-22, no. 1, January1974; and AP-31, no. 6, Part II, November 1983.
[36] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001, pp. 77-89.
[37] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, Second edition. New York: Wiley, 1998, pp. 1-86.
[38] Constantine A. Balanis, Antenna Theory Analusis and Design, Third edition. New York: Wiley, 2005.
[39] H. G. Booker, “Slot aerials and their relation to complementary wire Aerials,” Journal of the Institute of Electrical Engineers, part IIIA: Radiolocation, vol. 93, no. 4, pp. 620-626, 1946.
[40] W. F. Croswell, Antenna Engineering Handbook, New York: McGraw-Hill, 2007, chapter 8, pp. 8-2-8-14.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-05-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw