進階搜尋


下載電子全文  
系統識別號 U0026-2501201913503700
論文名稱(中文) 潛體阻力之三維數值模擬與紊流流場特性之分析
論文名稱(英文) The Three-Dimensional Numerical Simulation of Submerged Body’s Resistance and the Analysis of Turbulence Flow Field
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 曹翔皓
研究生(英文) Hsiang-Hao Tsao
學號 P16064154
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 口試委員-林正文
口試委員-鍾慶富
指導教授-方銘川
指導教授-林宇銜
中文關鍵字 計算流體力學  潛體阻力分析  網格細化  紊流模型 
英文關鍵字 CFD  Resistance analysis  Mesh refinement  Turbulence model 
學科別分類
中文摘要 本研究利用美國泰勒實驗室(David Taylor Research Center)之SUBOFF潛艦模型以計算流體力學方法進行潛體在水下運動之阻力分析,在數值模式中採有限體積法(Finite Volume Method, FVM)搭配壓力耦合方程的半隱式求解器(SIMPLEC, Semi-Implicit Method for Pressure-Linked Equations-Consistent)進行求解,並分別比較RNG K-ε、SST K-ω及Transition SST等三種紊流模型以建立適合用於潛體阻力分析之方法。在驗證過程中,首先將針對各紊流模型進行網格獨立性分析,除了確立後續適用的網格數量外,亦討論在未針對邊界層網格進行細化時,三種紊流模型對於預估潛體阻力之有效性。後續則以庫朗數(Courant Number)作為評估指標,確認時間步長的選用以及模擬結果間的相對關係,以找出適用的時間步長及庫倫數範圍。最後分析在不同Y+值的條件下,在潛體表面所建立之柱狀網格分佈情形,期能更精確有效的計算邊界層內的流場狀況,並比較三種紊流模型在邊界層網格細化後的計算結果,預期建立一套有效預估潛潛體潛航運動時所受到的阻力之數值方法。
英文摘要 The purpose of the study is to establish an effective and precise numerical method to predict the resistance of the submerged body in deep water by computational fluid dynamics(CFD) techniques, and the SUBOFF model of the David Taylor Research Center (DTRC) is taken as the verification object of the study.For the numerical model, Finite Volume Method (FVM) is used as a discretization technique for solving partial differential equations. Otherwise, the Semi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC) is employed to solve the flow field, Comparison between turbulence models RNG K-ε, SST K-ω and Transition SST were carried out to establish a suitable method for the analysis of submerged body’s resistance. In the verification process, the mesh independence analysis is first carried out for three turbulence model to define the suitable number of meshes to be applied in the research, it is also discussed that the effectiveness of each turbulence models for estimating the resistance of the submerged body when the meshes around the boundary layer is not refined. Courant Number analysis is adopted as an evaluation indicator to confirm if the selection of the time step size is reasonable. Finally, under the condition of different Y+ values, the prism-mesh layers were distributed on the surface of the submerged body. The effectiveness of three turbulence models were evaluated. An appropriate approach is than established with SST K-ω model to calculate the resistance of submerged body more accurately and more effectively within error less than 5%.
論文目次 摘要 I
致謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
符號說明 XVI
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 本文架構 5
第二章 理論背景 6
2-1 座標系統 6
2-2 統御方程式 7
2.2.1 連續方程式 7
2.2.2 動量方程式 7
2-3 紊流模型 8
2.3.1 RNG K-ε 9
2.3.2 SST K-ω 11
2.3.3 Transition SST 12
2-4 壁面函數 14
2-5 數值模擬及解算方式 17
2.5.1 有限體積法 17
2.5.2 求解器 19
2-6 潛體阻力之構成 22
第三章 數值方法 23
3-1 數值流場設定 23
3-2 邊界條件 25
3-3 網格劃分 26
3.3.1 網格劃分方式 27
3.3.2 網格獨立性分析 28
3.3.3 網格品質檢查 28
3-4 時間步長 30
第四章 計算方法驗證及結果分析 31
4-1 紊流模型之選擇與網格獨立性分析 31
4-2 時間步長及庫朗數分析 34
4-3 近壁區域網格加密之分析 37
4.3.1 RNG K-ε模型之近壁面網格加密分析 38
4.3.2 SST K-ω模型之近壁面網格加密分析 41
4.3.3 Transition SST模型之近壁面網格加密分析 43
4-4 不同航速下近壁區網格加密結果分析 45
4.4.1 航速5.93節(每秒3.050公尺)之數值模擬結果分析 45
4.4.2 航速10節(每秒5.144公尺)之數值模擬結果分析 48
4.4.3 航速11.85節(每秒6.096公尺)之數值模擬結果分析 51
4.4.4 航速13.92節(每秒7.160公尺)之數值模擬結果分析 55
4.4.5 航速16節(每秒8.230公尺)之數值模擬結果分析 58
4.4.6 航速17.79節(每秒9.151公尺)之數值模擬結果分析 61
4.4.7 各航速下模擬結果分析比較 64
4.4.8 潛體總體阻力之分析與比較 66
4-5 紊流流場特性之分析 68
4.5.1 不同航速下流場速度分佈 68
4.5.2 流場側視圖分析 71
4.5.3 艏部流場分析 74
4.5.4 艉部流場分析 77
4.5.5 帆罩周圍流場分析 81
4.5.6 不同航速下潛體壓力分佈 85
4.5.7 Y+值於潛體之分佈狀況 87
第五章 結論與未來展望 89
參考文獻 92
參考文獻 Ansys, A.F., 2013. 15.0 Theory Guide. ANSYS inc 390, 1.
Arentzen, E., Mandel, P., 1960. Naval Architectural of Submarine Design. Society of Naval Architects and Marine Engineers.
Crook, B., 1990. Resistance for Darpa SUBOFF as represented by Model 5470. David Taylor Research Center, Bethesda, Md.Ellis, C.L., Clarke, D.B., Butler, D., Brandner, P., 2016. Complementary CFD study of generic submarine model tests in a cavitation tunnel, 20th Australasian Fluid Mechanics Conference (AFMC), pp. 1-4.
Feldman, J., 1979. Dtnsrdc revised standarrd submarine equations of motion. DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP PERFORMANCE DEPT.
Ferziger, J.H., Peric, M., 2012. Computational methods for fluid dynamics. Springer Science & Business Media.
Fluent, A., 2010. 13.0 User’s Guide,(2010). Ansys Inc.
Fretes, E.R., Djatmiko, E., Wardhana, W., 2013. HYDRODYNAMIC ANALYSIS OF ADDITIONAL EFFECT OF SUBMARINE APPENDAGES. Advances and Application in Fluid Mechanics 13 (1).
Friedman, N., 1984. Submarine design and development. Naval Institute Press.
Gorski, J.J., Coleman, R.M., 2003. Use of RANS Calculations in the Design of a Submarine Sail. NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD.
Gross, A., Kremheller, A., Fasel, H., 2011. Simulation of flow over Suboff bare hull model, 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p. 290.
Groves, N.C., Huang, T.T., Chang, M.S., 1989. Geometric characteristics of DARPA suboff models:(DTRC Model Nos. 5470 and 5471). David Taylor Research Center.
Hoerner, S.F., 1965. Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistence. Sighard F. Hoerner.
ITTC, 2011. Practical Guidelines for Ship CFD Applications. Procedures, ITTC-Recommended Guidelines. 2011, 1-18.
Joubert, P., 2006. Some aspects of submarine design. Part 2. Shape of a submarine 2026. DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION VICTORIA (AUSTRALIA).
Karim, M., Rahman, M., Alim, M., 2009. Computation of turbulent viscous flow around submarine hull using unstructured grid. J. Ship Technol 5 (1), 973-1423.
Lin, Y.H., Tseng, S.H., Chen, Y.H., 2018. The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the Planar Motion Mechanism tests. Ocean Engineering 170, 120-135.
Liu, H.-L., Huang, T.T., 1998. Summary of DARPA SUBOFF experimental program data. NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD HYDROMECHANICS DIRECTORATE.
Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal 32 (8), 1598-1605.
Menter, F.R., Langtry, R.B., Likki, S., Suzen, Y., Huang, P., Völker, S., 2006. A correlation-based transition model using local variables—part I: model formulation. Journal of turbomachinery 128 (3), 413-422.
Moonesun, M., Javadi, M., Charmdooz, P., Mikhailovich, K.U., 2013. Evaluation of submarine model test in towing tank and comparison with CFD and experimental formulas for fully submerged resistance.
Moonesun, M., Korol, Y., 2015. Minimum Immersion Depth for EliminatingFree Surface Effect on Submerged Submarine Resistance. Turkish Journal of Engineering, Science and Technology (TUJEST) 3 (1), 36-46.
Patankar, S.V., Spalding, D.B., 1983. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Elsevier, pp. 54-73.
Renilson, M., 2015. Submarine hydrodynamics. Springer.
Roddy, R.F., 1990. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments. DAVID TAYLOR RESEARCH CENTER BETHESDA MD SHIP HYDROMECHANICS DEPT.
Smith, T., 2017. When the going gets tough, the tough use ANSYS for CFD Meshing. PADT,Inc.
Van Doormaal, J., Raithby, G., 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical heat transfer 7 (2), 147-163.
王憶紅, 2016. 台船標得25億元潛艦國造設計案. 自由時報.
林亨融, 2017. 反算設計問題於水下載具外型最佳化之研究. 成功大學系統及船舶機電工程學系學位論文, 1-79.
黃以丞, 2017. 後插式 Suboff 潛艦模型設計以及阻力試驗技術的確立. 成功大學系統及船舶機電工程學系學位論文, 1-70.
黃正弘, 陳永裕, 陳政宏, 林宇銜, 2016. 潛體流體動力之預測與實驗技術驗證之確立 (II)-潛體流體動力之預測與實驗技術驗證之確立 (II).
黃俊維, 劉宗龍, 張中耀, 潘冠呈, 2018. 邊界層對潛艇運動阻力影響之數值模擬研究.
劉韋群, 2015. 應用模組化數學模型之潛艦操船模擬系統之研發. 臺灣大學工程科學及海洋工程學研究所學位論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw