進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2501201015473400
論文名稱(中文) 汽油成份於四行程機車引擎氣態污染物排放特徵及模式研究
論文名稱(英文) The Effects of Fuel Composition on the Exhaust Emissions of a Four-stroke Motorcycle and Emission Predictive Model
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 98
學期 1
出版年 99
研究生(中文) 姚永真
研究生(英文) Yung-Chen Yao
學號 p5893108
學位類別 博士
語文別 英文
論文頁數 217頁
口試委員 口試委員-鄭福田
口試委員-張能復
口試委員-郝晶瑾
口試委員-江鴻龍
口試委員-張艮輝
口試委員-林達昌
指導教授-蔡俊鴻
中文關鍵字 機車  汽油含氧成份及芳香烴含量  氣態污染物  揮發性有害空氣污染物  排放預測模式 
英文關鍵字 motorcycle  gasoline oxygen and aromatics contents  gaseous air pollutant  volatile organic toxics  emission prediction model 
學科別分類
中文摘要 本研究為探討汽油成份於四行程機車排放氣態污染物之影響,研究控制參數為汽油含氧量及芳香烴含量。汽油含氧量分別為1.0、3.4、5.2及6.1 wt%,以乙醇為含氧添加劑,於不含甲基四丁基醚(MTBE)之無鉛汽油中添加3% (E3)、10% (E10)、15% (E15)及20% (E20)體積比之乙醇,共四支測試油;芳香烴含量分別為15% (A15)、25% (A25)及50% (A50),共三支測試油。解析污染物包括基準污染物(CO、THC及NOx)、揮發性有機物(VOCs)及醛酮化合物(Carbonyls)。測試車輛為四行程化油器機車,排氣量125 cm3,並無裝設觸媒轉換器,於車體動力計以標準測試行車型態(CNS 11386)量測全程尾氣排放;排氣量測結果與市售95無鉛汽油(MTBE為含氧添加劑)比較。此外,利用線性迴歸方法分別推導出不同汽油成份於四行程機車引擎排放氣態污染物預測模式。
研究結果顯示,以乙醇做為汽油含氧成份可降低CO及THC排放;與市售95無鉛汽油比較(含氧量1.9 wt%),使用E15 (含氧量5.2 wt%)排放減量效果最大。然乙醇含量高至20 vol% (E20)時,基準污染物排放減量反而降低,係因使用E20為燃油時造成測試機車引擎之燃燒條件改變所致。以乙醇做為汽油含氧成份對尾氣THC排放影響並不明顯,油品成份與排放相關性結果顯示其他汽油成份(如: 芳香烴、環烷類)亦影響THC排放。有害空氣污染物排放影響結果指出,市售95無鉛汽油比較,尾氣苯、甲苯、乙苯及甲醛排放減量,但會造成乙醛排放明顯增量;E20之測試結果更顯示乙醛排放增加高達10倍。與基準污染物相同,使用E15具最大有害空氣污染物排放減量。油品成份與排放相關性結果亦顯示有害空氣污染物與汽油乙醇含量具相當強相關性(相關係數> 0.95)。
以乙醇做為汽油含氧成份時提昇汽油含氧量,因此,造成CO、NOx及部份有害空氣污染物排放減量。然而,因為乙醇部份氧化及燃燒過程中產生之甲基及乙基自由基(methyl and ethyl radicals)等乙醛前趨物快速氧化而形成乙醛,造成尾氣排放增量。
改變汽油芳香烴含量對基準污染物排放之結果顯示,與市售95無鉛汽油(芳香烴含量30 vol%)比較,降低芳香烴含量至25%及15%對尾氣THC及NOx排放造成減量;但對CO排放僅有些微影響(-2%)。然市售汽油中直鏈烷類(paraffins)含量高於其他芳香烴汽油甚多;若不論市售汽油,三支芳香烴汽油比較芳香烴含量由50 vol%降至25及15 vol%對基準污染物排放亦顯示減量約4-7%。於有害空氣污染物排放影響結果顯示,降低油品芳香烴含量會使尾氣中苯及甲苯排放減量,但增加甲醛及乙醛排放。研究結果亦顯示甲醛及乙醛與汽油烷類含量具高度相關。
本研究應用多元迴歸分析推導汽油成份於四行程機車引擎排放氣態污染物預測模式,於設定之油品範圍內(即乙醇含量3-15 vol%, 芳香烴含量15-50vol%),汽油含氧成份之CO及THC排放預測模式顯示相當好(r2 > 0.95)線性關係,但未推導出NOx排放模式;甲苯、二甲苯、乙苯及乙醛亦獲得適用排放預測模式,苯及甲醛無法求出有效之預測模式,顯示除選定之油品成份外,另有其他來源影響NOx、苯及甲醛之排放。汽油芳香烴成份改變之排放預測模式結果顯示,THC模式之線性關係相當好(r2 > 0.95),NOx於對數轉換後(Log NOx)得到可接受線性模式(r2 > 0.75);CO無法求出排放預測模式。苯及甲苯亦獲得適用排放預測模式,然而乙苯、二甲苯、甲醛及乙醛無法求出預測模式,顯示除選定之油品成份外,另有其他來源影響污染物排放。
英文摘要 This study investigated the effects of fuel composition, oxygen content, and aromatic content on air pollutant emissions from a non-catalyst four-stroke carburetor motorcycle. Two types of fuel were designed to evaluate the impact of fuel composition on the emission of criteria pollutants (CO, THC, NOx) and organic air toxics (VOCs, carbonyls). The first fuel’s oxygen content was changed. Ethanol was used as the oxygenated additive. Different test blends contained 3% (E3), 10% (E10), 15% (E15), and 20% ethanol (E20) by volume and the corresponding fuel oxygen content was 1.0, 3.4, 5.2, and 6.1% by weight, respectively. The second fuel’s aromatic content was changed. Different test blends contained 15 (A15), 25 (A25), and 50% (A50) aromatics by volume.
The results of all test fuels were compared to those of commercial unleaded gasoline as reference fuel (RF), in which methyl tert-butyl ether (MTBE) was the oxygenated additive, to evaluate the effectiveness of emission reduction. A standard procedure, CNS 11386, was used for the motorcycle emission test and entire cycle of emissions of was measured. Multivariate regression analysis was used to develop the models for emissions of criteria pollutants and selected organic compounds.
The results showed that the CO and NOx emissions of ethanol-gasoline blends decreased with increased oxygen content in fuels. In particular, the E15 (oxygen content 5.2 wt%) had the highest emissions reductions relative to the reference fuel (oxygen content 1.9 wt%) while the high ethanol content (E20) fuel resulted in a lower emissions reduction than those with low ratio blends (< 15%). This may be attributed to changes in the combustion conditions in the carburetor with the addition of 20% ethanol. In contrast, ethanol-gasoline fuel did not reduce THC emissions because of other components of the fuel such as aromatics and naphthenes, which may also influence THC emissions. The addition of ethanol also resulted in a less selected air toxics emissions (benzene, toluene, ethylbenzene, xylene, and formaldehyde, but not acetaldehyde) compared to those from the RF. In some cases acetaldehyde emissions in ethanol fuels were tenfold those from the RF. The correlation results imply that there is a strong relationship between emissions and ethanol content in fuel.
The presence of excess oxygen during combustion has a significant effect on emissions of CO, THC, and various oxygenated hydrocarbons including air toxics. However, acetaldehyde increased with increased oxygen content because acetaldehyde precursors are rapidly oxidized under lean conditions.
The data on aromatics fuels indicate that lower aromatic content (25 and 15 vol%) in gasoline reduced the amount of THC and NOx emissions by over 15% compared to the RF (aromatics content 30 vol%). CO emissions, on the other hand, showed only a slight reduction (2%) with aromatic content in gasoline. Disregarding the reference fuel, decreasing the aromatic content of gasoline from 50 and 25 vol% to 15 vol% also reduced THC and NOx emissions. With regard to air toxic emissions, reduction in fuel aromatic content decreases benzene and toluene emissions, but, at the same time, it also increases aldehyde emissions. Exhaust aldehydes are mainly formed by the oxidation of paraffin, and decreasing gasoline aromatic content may require additional paraffin content. The correlation results generally implied a strong relationship between the formaldehyde and acetaldehyde emissions and the fuel paraffin content.
The emission prediction model for the ethanol-blended gasoline showed that the developed linear models agreed with CO and THC emissions (r2 > 0.95), however, the result showed that no NOx emission linear model has been found. For air toxics, the models for the following compounds were found to be appropriate: toluene, xylene, ethylbenzene, and acetaldehyde, whereas for NOx, benzene and formaldehyde, no model correlating exhaust emissions with fuel composition was found. For aromatics content changed fuels the results showed that the developed linear models were appropriate for THC emissions (r2 > 0.95). NOx emissions also indicated a good linear model. However, the linear model was not good in the case of CO emissions. For air toxics, appropriate prediction models were developed for benzene and toluene emissions, but no model correlating exhaust ethylbenzene, xylene, formaldehyde, and acetaldehyde with fuel composition was found. These models could be use to predict criteria and toxics emissions at the target fuel property levels of 3, 10, and 15 vol% ethanol content or 15, 25, and 50 vol% aromatic content.
論文目次 摘 要 I
ABSTRACT III
誌 謝 V
CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES XII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Research Objectives 3
CHAPTER 2 LITERATURES REVIEW 5
2.1 Emission Profiles of Pollutants from Motorcycle Exhaust 5
2.2 Regulations of Gasoline Composition and Performance 11
2.3 Influence of Engine Performance on Exhaust Emissions 22
2.4 Studies of the Effect of Fuel Composition on Exhaust Emissions 35
2.5 Emission Reduction Model of Gaseous Pollutants from Motor Gasoline 61
CHAPTER 3 EXPERIMENTAL METHODS 67
3.1 Research Methodology 67
3.2 Test Fuels 70
3.3 Testing Motorcycles and Related Equipments 79
3.4 Test Procedures 83
3.5 Calculation of Emission Factors and Date Analysis 96
3.6 Emission Model Development 99
CHAPTER 4 RESULTS AND DISCUSSION 101
4.1 Effects of Fuel Composition on Criteria Air Pollutant Emissions 101
4.1.1 Oxygen content (ethanol as oxygenated additive) 101
4.1.2 Aromatics content 107
4.1.3 Brief summary 114
4.2 Effects of Fuel Composition on Organic Air Pollutant Emissions 132
4.2.1 Oxygen content effects on VOC emission 132
4.2.2 Oxygen content effects on air toxics emission 136
4.2.3 Aromatics content effects on VOC emission 140
4.2.4 Aromatics content effects on air toxics emission 144
4.2.5 Brief summary 147
4.3 Effects of Gasoline Compositions on Fuel Consumption 167
4.3.1 Oxygen content 167
4.3.2 Aromatics content 168
4.4 Emission Model to Correlate Fuel Composition 173
4.4.1 Criteria air pollutant emission model of oxygen content 173
4.4.2 Air toxics emission model of oxygen content 176
4.4.3 Brief summary of emission model for oxygen content changed fuel 180
4.4.4 Criteria air pollutant emission model of aromatics content 181
4.4.5 Air toxics emission model of aromatics content 184
4.4.6 Brief summary of emission model for aromatics content changed fuel 187
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 199
5.1 Conclusions 199
5.2 Recommendations 202
REFERENCES 205
參考文獻 Al-Farayedhi A.A., Al-Dawood A.M., Gandhidasan P., 2000. Effects of blending crude ethanol with unleaded gasoline on exhaust emissions of SI engine. SAE Technical Paper Series, 2000-01-2857. Society of Automotive Engineers, Warrendale, PA.
Al-Hasan M., 2003. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44(9), 1547-1561.
AQIRP, 1997. Auto/Oil Air Quality Improvement Research Program: Program Final Report. Coordinating Research Council, Atlanta, GA.
Asian Development Bank (ADB) Workshop, 2001, Automotive Emission in Thailand- Present at Regional Workshop: Reduction of Emission from 2-3 Wheelers. September 5-7, 2001, Hanoi, Viet Nam
Asian Development Bank (ADB), 2003a, Policy Guidelines for Reducing Vehicle Emissions in Asia, Cleaner Two and Three Wheelers. Publication Stock No. 110402, Published by the Asian Development Bank, Manila, Philippines.
Asian Development Bank (ADB), 2003b, Policy Guidelines for Reducing Vehicle Emissions in Asia, Cleaner Fuels. Publication Stock No. 110502, Published by the Asian Development Bank, Manila, Philippines.
Bell A., 2006. The Effect of Fuel Formulation on the Exhaust Emissions of Spark Ignition Engines. Doctor Dissertation, The University of Stellenbosch, South Africa.
Bielaczyc P., Merkisz J., 1997. Exhaust emission from passenger cars during engine cold start and warm-up. SAE Paper No. 970740. Society of Automotive Engineers, Warrendale, PA.
Boekhaus K.L., 1990. cited by Jain et al., 2004. Reformulated Gasoline for Clean Air – An ARCO Assessment. Paper presented in the 2nd Biennial U. C. Davis Conference on Alternative Fuels, July 1990.
Bowman C.T., 1975. Kinetics of pollutant formation and destruction in combustion. Progress in Energy and Combustion Science 1(1), 33-45.
Bovonsombat P., Boonchanta P., Hohn, G., 1998. Field Test of Two-Stroke Catalytic Converter in Thailand. International Fall Fuels and Lubricants Meeting and Exposition, San Francisco, California, October 19-22, 1998.
Brace N., Kemp R., Snelgar R., 2006. A Guide to Data Analysis Using SPSS for Windows: Chapter 7 Multiple Regression, An Introduction to Multiple Regression Performing a Multiple Regression on SPSS. 3rd Edition, Palgrave Macmillan, Mahwah, New Jersey.
Brink P.J. van den., MacDonald C.R., 1995. The Influence of the hydrocarbon composition on NO conversion in 3-way catalyst: the NOx/aromatics effect. SAE Paper No. 952399. Society of Automotive Engineers, Warrendale, PA.
California Air Resources Board (CARB), 1990. Staff Report for Reformulated Gasoline: Proposed Phase 1 Specifications.
California Air Resources Board (CARB), 1991. California Phase 2 Reformulated Gasoline Specifications, Volume 1 – Proposed Regulations for California Phase 2 Reformulated Gasoline.
California Air Resources Board (CARB), 1999. Proposed California Phase 3 Reformulated Gasoline Regulations. Staff Report.
California Air Resources Board (CARB), 2003. The California Reformulated Gasoline Regulations, Title 13, California Code of Regulations, Sections 2250-2273.5, CaRFG3 Regulations.
Ceviz M.A., Yüksel F., 2005. Effects of ethanol-unleaded gasoline blends on cyclic variability and emissions in an SI engine. Applied Thermal Engineering 25. 917–925.
Chevron Product Company, 2003. Motor Gasolines: Technical Review.
Collier A., Rhead M.M., Trier C.J., Bell M.A., 1995. Polynuclear aromatic compound profiles from a light-duty direct-injection diesel engine. Fuel 74(3), 362-367.
Conservation of Clean Air and Water in Europe (CONCAWE), 2001. Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and annual 1999/2000 update. Report No. 1/01. CONCAWE, Brussels.
Conservation of Clean Air and Water in Europe (CONCAWE), 2001. Motor Vehicle Emission Regulations and Fuel Specifications – Part 2 Detailed Information and Historic Review (1996-2000). Report No. 2/01. CONCAWE, Brussels.
Cuvelier D.H., Clark R.H., Craecker R.D., Guttmann H.J., Honkanen M., Jansen E.B.M., Martini G., Reynolds E.G., Rickeard D.J., Wolff G., Zemroch P.J., Thompson N.D., 2002. Evaluation of Diesel Fuel Cetane and Aromatics Effects on Emissions from Euro-3 Engines. Report no. 4/02. CONCAWE, Brussels.
Encyclopædia Britannica, 2009. Carburetor, Encyclopædia Britannica Online, Retrieved October 07, 2009.
Encyclopædia Britannica, 2009. Gasoline Engine, Encyclopædia Britannica Online, Retrieved October 07, 2009, from: http://www.britannica.com/EBchecked/topic/226592/gasoline-engine
Energy Information Administration (EIA), 1998. Refiners Switch to Reformulated Gasoline Complex Model.
European Commission (EC), 2003. European Parliament and Council Directive 2003/17/EC.
Furey R.L., King J.B., 1980. Evaporative and exhaust emissions from cars fueled with gasoline containing ethanol or methyl tert-butyl ether. SAE Paper No. 800261, Society of Automotive Engineers (SAE), Warrendale, PA.
Gething J.A., Kent Hoekman S., Guerrero A.R., Lyons, J., 1990. The Effect of gasoline aromatics content on exhaust emissions: A co-operative test program. SAE Paper 902073, Society of Automotive Engineers, Warrendale, PA.
Glaude P.A., Battin-Leclerc F., Judenherc B., Warth V., Fournet R., Côme G. M., Scacchi G., Dagaut P., Cathonnet M., 2000. Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. Combustion and Flame 121(1-2), 345-355.
Goodfellow C.L., Gorese R.A., Hawkins M.J., McArragher J.S., 1996. European programme on emission, fuels and engine technologies – Gasoline aromatics/E100 study. SAE Technical Paper Series, 961072, Society of Automotive Engineers, Warrendale, PA.
Gorse Jr. R.A., Benson J.D., Burns V.R., Hochhauser A.M., Koehl W.J., Painter L.J., Reuter R.M., Rippon B.H., Rutherford J.A., 1992. Toxic air pollutant vehicle exhaust emissions with reformulated gasoline. Proceedings of a U.S.EPA/A&WMA International Specialty Conference. Air & Waste Management Association, Pittsburgh. U.S.EPA / A&WMA 1992: 55-81.
Guerrieri D.A., Caffrey P.J, Rao W., 1995. Investigation into the vehicle exhaust emissions of high percentage ethanol blends. SAE Document Number, 950777, Society of Automotive Engineers, Warrendale, PA.
Hamburg D.R., Cook J.A., Kaiser W.J., Logothetis E.M., 1983. An engine dynamometer study of the A/F compatibility between a three-way catalyst and an exhaust gas oxygen sensor. SAE Technical Paper No. 830986, Society of Automotive Engineering, Warrendale, PA.
He B.Q., Wang J.X., Hao J.M., Yan X.G., Xiao J.H., 2003. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949-957.
Heywood J.B., 1995. Internal Combustion Engine Fundamentals. McGraw Hill International Editions, New York.
Hickman J., Hassel D., Joumard R., Samaras Z., Sorenson S., 1999. Methodology for Calculating Transport Emissions and Energy Consumption. Published by Transport Research Laboratory (TRL), Report No. SE/491/98, Crowthorne, United Kingdom.
Hirohiko H., Takei Y., 1995. Effects of fuel properties on exhaust emissions, Toyota Motor Corporation, Fuels & Lubs Conference, Singapore.
Hochgreb S., 1998. Combustion-related emissions in SI engines. In: Sher, E. (Ed.), Handbook of Air Pollution from Internal Combustion Engines, Pollutant Formation and Control. Academic Press, New York, pp., 118-170.
Hochhauser A.M., Koehl W.J., Painter L.J., Rippon B.H., Reuter R.M., Rutherford J.A., Benson J.D., Burns V.R., Gorse Jr. R.A., 1991. The effect of aromatics, MTBE, olefins, and T90 on mass exhaust emissions from current and older vehicles. SAE Paper No. 912322, Society of Automotive Engineers, Warrendale, PA.
Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410.
Ikeda Y., Nakajima T., Sher.E., 1998. Air pollution from small two-stroke engines and technologies to control it. In: Sher, E. (Editor), Handbook of Air Pollution from Internal Combustion Engines, Pollutant Formation and Control. Academic Press, New York, pp., 441-476 (Chapter 13).
Jain A.K., Babu V.S.S., Saxena M., Aigal A.K., Singal S.K., Koganti R.B., Nandi S., 2004. Effect of gasoline composition (olefins, aromatics and benzene) on automotive exhaust emissions – A literature review. SAE Technical Paper No. 2004-28-0081, Society of Automotive Engineering, Warrendale, PA.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123(1-3), 29–34.
Karman D., 2003. Ethanol fuelled motor vehicle emissions: A literature review. Report submitted to Air Health Effects Division, Health Canada.
Kirchstetter T.W., Singer B.C., Harley R.A., Kendall G.R., Chan W., 1996. Impact of oxygenated gasoline use on California light-duty vehicle emissions. Environmental Science & Technology 30(2), 661-670.
Knapp K.T., Stump F.D., Tejada S,B., 1998. The effect of ethanol fuel on the emissions of vehicles over a wide range of temperatures. Journal of the Air & Waste Management Association 48, 646-653.
Koehl W.J., Painter L.J., Reuter R.M., Benson J.D., Burns V.R., Gorse R.A. Jr., Hochhauser A.M., 1991. Effects of gasoline sulfur level on mass exhaust emissions - Auto/oil air quality improvement research program. SAE Paper No. 912323, Society of Automotive Engineers, Warrendale, PA.
Leong S.T., Muttamara S., Laortanakul P., 2002. Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503.
Lowenthal D.H., Zielinska B., Chow J.C., Watson J.G., Gautam M., Ferguson D.H., Neuroth G.R., Stevens K.D., 1994. Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment 28(4), 731-743.
MacKinven R., Hublin M., 1996. European programme on emissions, fuels and engine technologies – Objectives and design. SAE Technical Paper Series, 961065, Society of Automotive Engineers, Warrendale, PA.
Manufacturers of Emission Controls Association (MECA), 1999. Emission Control of Two-and Three-Wheel Vehicles. Washington, DC.
Marshall W.F., 1988, cited by Jain et al., 2004. Final Report, Study to Determine the Fate of Benzene Precursors in Gasoline. National Institute for Petroleum and Energy Research, Bartlesville, OK.
McArragher J.S., Becker R.F., Goodfellow C.L., Jeffrey J.G., Morgan T.D.B., Scorletti P., Snelgrove D.G., Zemroch P.J., Hutcheson R.C., 1996. The Influence of Gasoline Benzene and Aromatics Content on Benzene Exhaust Emissions from Non-Catalyst and Catalyst Equipped Cars - A Study of European Data, Report No. 96/51, CONCAWE, Brussels.
McArragher J.S., Becker R.F., Bennett P.J., Claus G., Graham J., Lang G., Leeuwen C.J. van, Rickeard D., Schuermann F., Heinze P., 1999. Fuel Quality, Vehicle Technology and their Interactions. Report No. 99/55, CONCAWE, Brussels.
McDonald J.D., Zielinska B., Sagebiel J.C., McDaniel M.R, 2002. Characterization of fine particle material in ambient air and personal samples from an underground mine. Aerosol Science and Technology 36(11), 1033-1044.
Niven R.K., 2005. Ethanol in gasoline: Environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews 9, 535-555.
Pahl R.H., McNally M.J., 1990. Fuel blending and analysis for the auto/oil air quality improvement program. SAE Paper No. 902098, Society of Automotive Engineers, Warrendale, PA.
Payne-Sturges D.C., Burke T.A., Breysse P., Diener-West M., Buckley T.J., 2004. Personal exposure meets risk assessment: A comparison on measured and modeled exposures and risks in an urban community. Environmental Health Perspectives 112: 589-598.
Pearson, J.K., 2001. Improving Air Quality: Progress and Challenges for the Auto Industry. Society of Automotive Engineers (SAE), Warrendale, PA.
Pedersen P.S., Ingwersen J., Nielsen T., Larsen,E., 1980. Effect of fuel, lubrication, and engine operating parameters on emissions of polycyclic aromatic hydrocarbons. Environmental Science & Technology 14(1), 71-79.
Perry R., Gee I.L., 1995. Vehicle emissions in relation to fuel composition. Science of the Total Environment 169(1-3), 149-156.
Petit A., Montagne X., 1993. Effects of the gasoline composition on exhaust emissions of regulated and speciated pollutants. SAE Technical Paper Series, 932681, Society of Automotive Engineers, Warrendale, PA.
Poulopoulos S.G., Samaras D.P., Philippopoulos C.J., 2001. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment 35, 4399-4406.
Prati M.V., Rapone M., Violetti N., Mercogliano R., Trerè R., 2000. Regulated and benzene emissions of in-use, two-stroke mopeds and motorcycles. SAE Technical Paper Series, 2000-01-0862, Society of Automotive Engineers, Warrendale, PA.
Rao V., 1999. Fuel Sulfur Effects on Exhaust Emissions Recommendations for Mobile 6. Report No. EPA420-P-99-008, U.S.EPA. Washington D.C.
Regional Association of Oil and Natural Gas in Latin America and the Caribbean (ARPEL), 2001. Systemic Approach to Vehicular Control Emission in Latin America and the Caribbean, Montevideo, Uruguay.
Reuter R.M., Benson J.D., Burns V., Gorse R.A., Hauchhauser A.M, Koehl W.J., Painter L.J., Rippon B.H., Rutherford J.A., 1992. Effects of oxygenated fuels and RVP on automotive emissions. SAE Technical Paper Series, 920326, Society of Automotive Engineers, Warrendale, PA.
Rickeard D.J., Bazzani R., Bjordal S.D., Kuck K., Martinez P.M., Schmelzle P., Scorletti P., Stradling R.J., Wolff G., Zemroch P.J., Thompson N.D., 2003. Fuel Effects on Emissions from Modern Gasoline Vehicles Part 1 - Sulphur Effects. Report No. 5/03. CONCAWE, Brussels.
Rippon B.H., 1996. AQIRP and EPEFE - A comparison of the programs and their results. American Chemical Society, Division of Fuel Chemistry, Fuel volume: Symposium on the Impact of Clean Air Act on Fuels Production and Use, 41(3), 849-853, ORLANDO.
Rutherford J.A., Koehl W.J., Benson J.D., Burns V.R., Hochhauser A.M., Knepper J.C., Leppard W.R., Painter L.J., Rapp L.A., Roppon B., Reuter R.M., 1995. Effects of gasoline properties on emissions of current and future vehicles–T50, T90, and sulfur effects–Auto/oil air quality improvement research program. SAE Technical Paper Series, 952510, Society of Automotive Engineers, Warrendale, PA.
Sanger R.P., Aarnink T.J., Flöysand S.Å., Gadd P., Le Breton D., Mann N., Marotta A., Skårdalsmo K., Snelgrove D.G., Sunderbrink T., Heinze P., Hutcheson R.C., 1997. Motor Vehicle Emission Regulations and Fuel Specifications: Part 2 Detailed Information and Historic Review (1970-1996). Report No. 6/97, CONCAWE, Brussels.
Schifter I., Dı’az L., Lo’pez-Salinas E., Ramos F., Avalos S., Lo’pez-Vidal G., Castillo M., 2000. Estimation of motor vehicle toxic emissions in the metropolitan area of Mexico City. Environmental Science & Technology 34(17), 3606~3610.
Schifter I., Dı’az L., Vera M., Guzma´n E., Lo’pez-Salinas E., 2003. Impact of sulfur-in-gasoline on motor vehicle emissions in the metropolitan area of Mexico City. Fuel 82, 1605–1612.
Schifter I., Dı’az L., Vera M., Guzma´n E., Lo’pez-Salinas E., 2004. Fuel formulation and vehicle exhaust emissions in Mexico. Fuel 83(14-15), 2065–2074.
Schifter I., Dı’az L., Lo’pez-Salinas E., 2005. Hazardous air pollutants from mobile sources in the metropolitan area of Mexico City. Journal of the Air & Waste Management Association 55, 1289-1297.
Schifter I., Dı’az L., Lo’pez-Salinas E., 2006. A predictive model to correlate fuel specifications with on-road vehicles emissions in Mexico. Environmental Science & Technology 40(4), 1270-1279.
Schoonveld G.A., Marshall W.F., 1991. The total effect of a reformulated gasoline on vehicle emissions by technology (1973 to 1989). SAE Paper No. 910380, Society of Automotive Engineers, Warrendale, PA.
Schuetzle D., Siegl W.O., Jensen T.E., Dearth M.A., Kaiser E.W., Gorse R., Kreucher W., Kulik E., 1994. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs. Environmental Health Perspectives 102(4), 3-12.
Seizinger D.E., cited by Jain et al., 2004. Vehicle Evaporative and Exhaust Emissions as Influenced by Benzene Content of Gasoline, Report of National Institute for Petroleum and Energy Research, Bartlesville, OK, April 1986.
Shen Y., Shuan S., Wang J., Xiao J., 2008. Effects of gasoline fuel properties on engine performance. SAE Paper No. 2008-01-0628, Society of Automotive Engineers, Warrendale, PA.
Stradling R.J., Bazzani R., Bjordal S.D., Martinez P.M., Rickeard D.J., Schmelzle P., Scorletti P., Wolff G., Zemroch P.J., Thompson N.D., 2004. Fuel Effects on Emissions from Modern Gasoline Vehicles, Part 2 - Aromatics, Olefins and Volatility Effects. Report No. 2/04. CONCAWE, Brussels.
Stump F.D., Knapp K.T., Ray W.D., Siudak P.D., Snow R.F., 1994. Influence of oxygenated fuels on the emissions from three pre-1985 light-duty passenger vehicles. Journal of the Air & Waste Management Association 44, 781-786.
Stump F., Tejada S., Dropkin.D, Loomis C., Park C., 2001. Characterization of Emissions from Malfunctioning Vehicles Fueled with Oxygenated Gasoline-Ethanol (E-10) Fuel - Part II. EPA Report #: EPA-600/R-01-053, U.S. Environmental Protection Agency, Environmental Characterization & Apportionment Branch, Research Triangle Park, North Carolina.
Takei Y., Vehara T., Hoshi H., Sugiyama S., Okada M., 1995. Effects of California Phase 2 reformulated gasoline regulations on exhaust emissions reduction: Part 2. SAE Paper No. 952502, Society of Automotive Engineers, Warrendale, PA.
Taylor A.B., Mocan D.P., Bell A.J., Hodgson N.G., Myburgh I.S., Botha J.J., 1996. Gasoline/alcohol blends: Exhaust emissions, performance and burn-rate in a multi-valve production engine. SAE Technical Paper Series, 961988. Society of Automotive Engineers, Warrendale, PA.
The World Bank, 2000. Improving Urban Air Quality in South Asia by Reducing Emissions from Two-Stroke Engine Vehicles. Washington D.C.
Toyota Motor Sales, USA, Inc.. Toyota Training Series, from http://www.autoshop101.com
Tsai J.H., Hsu Y.C., Weng H.C., Lin W.Y., Jeng F.T., 2000. Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34(28), 4747-4754.
Tsai J.H., Chiang H.L., Hsu Y.C., Weng H.C., Yang C.Y., 2003. The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different running modes. Atmospheric Environment 37(18), 2485-2496.
Tsai J.H., Liu Y.Y., Yang C.Y., Chiang H.L., Chang L.P., 2003. Volatile organic profiles and photochemical potentials from motorcycle engine exhaust. Journal of the Air and Waste Management Association 53 (5): 516-522.
United Nations Development Programme (UNDP)/World Bank Energy Sector Management Assistance Programme (ESMAP), 2003. Thailand - Reducing emissions from motorcycles in Bangkok. The World Bank, Washington D.C.
United States Environmental Protection Agency (USEPA), 1994. Environmental Fact Sheet- Air Toxics from Motor Vehicles. EPA400-F-92-004, Office of Transportation and Air Quality, Washington, DC.
United States Environmental Protection Agency (USEPA), 1999a. Emission Facts: Reformulated Gasoline. EPA420-F-99-040, Office of Mobile Sources, Ann Arbor.
United States Environmental Protection Agency (USEPA), 1999b. Phase II Reformulated Gasoline: The Next Major Step toward Cleaner Air. EPA420-F-99-042,
United States Environmental Protection Agency (USEPA), 2008. Fuel Trends Report: Gasoline 1995-2005. EPA420-R-08-002, Office of Transportation and Air Quality.
Warner-Selph M.A., Harvey C.A., 1990. Assessment of unregulated emissions from gasoline oxygenated blends. SAE Technical Paper Series, 902131, Society of Automotive Engineers, Warrendale, PA.
Wedekine B., Bennett P. J., Goodfellow C. L., Jeffrey J. G., Marchesi G. F., MacDonald C.R., 1995. The indepent effect of mid-range and back-end volatility and aromatic content on emissions from two European gasoline vehicles. SAE Paper No. 952522, Society of Automotive Engineers, Warrendale, PA.
Weilenmann M., Soltic P., Saxer C., Forss A.M., Heeb N., 2005. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment 39, 2433-2441.
Westerholm R., Almen J., Li H., Rannug U., Rosen A., 1992. Exhaust emissions from gasoline-fuelled light duty vehicles operated in different driving conditions: A chemical and biological characterization. Atmospheric Environment 26B(1), 19-89.
Wigg E.E., 1973, cited by Jain et al., 2004. Reactive exhaust emissions from current and future emission control systems. SAE Technical Paper Series, 730196, Society of Automotive Engineers, Warrendale, PA.
Wu C.H., Chen R.H., Pu J.Y., Lin T.H., 2004. The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmospheric Environment 38, 7093-7100.
Xie J., Shah J.J., Capannelli E., Wang Hu., 2004. Phasing out polluting motorcycles in Bangkok: Policy design by using contingent valuation surveys. World Bank Policy Research Working Paper 3402 (WPS3402), September 2004.
Yao Y.C., Tsai J.H., Chang A.L., Jeng F.T., 2008. Effects of sulfur and aromatic contents in gasoline on motorcycle emissions. Atmospheric Environment 42, 6560-6564.
Yüksel F., Yüksel B., 2004. The use of ethanol-gasoline blend as a fuel in an SI engine. Renewable energy 29(7), 1181-1191.
Zervas E., Montagne X., Lahaye J., 1999. The influence of gasoline formulation on specific pollutant emissions. Journal of the Air & Waste Management Association 49(11). 1304-1314.
Zervas E., Montagne X., Lahaye J., 2002. Emission of alcohols and carbonyl compounds from a spark ignition engine: Influence of fuel and air-fuel equivalence ratio. Environmental Science & Technology 36(11), 2414-2421.
Zervas E., Montagne X., Lahaye J., 2003. Emission of regulated pollutants from a spark ignition engine: Influence of fuel and air/fuel equivalence ratio. Environmental Science & Technology 37(14), 3232-3238.
Zervas E., Montagn X., Lahaye J., 2004a. Influence of fuel and airfuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings. Fuel 83, 2301-2311.
Zervas E., Montagn X., Lahaye J., 2004b. Influence of fuel and airfuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2 Formation pathways and modelling of combustion processes. Fuel 83, 2313-2321.
Zervas E., Montagn X., Lahaye J., 2004c. Impact of fuel composition on the emission of regulated pollutants and specific hydrocarbons from a SI engine. Tech. Chron. Science Journal, TCG V (1-2), 35-44.
中文部份
台灣區車輛工業同業公會(TTVMA), 2009, 機車銷售統計月報表-內銷數量(98年12月), 資料由車輛工業同業公會網頁獲得, 2009.02.17公布.
三陽機車(Sanyang Industry), 三陽機車心情125&高手125維修手冊, 三陽機車服務部出版.
交通部(MOTC), 2008a, 交通統計: 表3-2臺閩地區機動車輛登記數(民國九十七年底), 資料網頁http://www.motc.gov.tw/hypage.cgi?HY PAGE = stat06.asp&catid=5.
交通部(MOTC), 2008b, 統計報告: 機車使用狀況調查報告(96年1月至12月).
行政院環境保護署(TEPA), 2001, 公告機器腳踏車冷車行車型態排氣污染測試方法及程序、機器腳踏車蒸發污染測試方法及程序、機器腳踏車耐久測試方法及程序(90.10.24), 環署空字第00六七三二五號公告.
行政院環境保護署(TEPA), 2006a, 車用汽柴油油品查驗及空氣污染防制費查核計畫期末報告, EPA-95-FA13-03-A021.
行政院環境保護署(TEPA), 2006b, 推動車輛使用酒精汽油替代燃料可行性策略分析及成本效益評估專案工作計畫, EPA-94-FA13-03-A231.
行政院環境保護署(TEPA), 2008a, 空氣污染物排放清冊更新管理及空氣品質質損量推估計畫, EPA-96FA11-03-A174.
行政院環境保護署(TEPA), 2008b, 移動污染源減量與交通運輸管理推動專案工作計畫, EPA-96-FA13-03-A185.
行政院環境保護署(TEPA), 2009, 2005-2008車型年(機車)汽油引擎符合排放標準車型清冊.
環保署/國科會空污防制科技研究合作計畫(NSC/EPA), 2005a, 總計畫: 油品對機車排放空氣污染物特性之研究, NSC94-EPA-Z-002-009.
環保署/國科會空污防制科技研究合作計畫(NSC/EPA), 2005b, 子計畫二: 油品成份對機車引擎排放氣態污染物影響研究, NSC 94-EPA-Z-006-006.
行政院環境保護署環境保護人員訓練所(TEPA-EPTI), 汽機車行車型態及惰轉狀態檢查人員訓練課程-機車排放空氣污染物防治技術.
高雄市政府環境保護局(KSEPB), 2004, 九十三年暨九十四年度機車排氣定期檢驗計畫-二行程機車使用及汰舊換新策略之研究.
經濟部能源局(MOEABOE), 2006, 車輛油耗指南-機車合格車型油耗測試資料表, 2006年2月版
黃靖雄(Huang, C.H.), 2002, 現代低公害省油汽車排氣污染控制技術及裝置(再版), 全華科技圖書股份有限公司.
蕭瑞聖(Hsiao, J.S.), 2005, 機車原理與機構(增訂本), 財團法人徐氏文教基金會.
薛天山(Shue, T,S) , 2005, 內燃機, 全華科技圖書股份有限公司.
吳浴沂(Wu, Y.Y.), 2005, 機車排氣污染管制與未來技術策略, 機械工業雜誌, 271期.
鄭宗正, 林瑞榕, 陳永勳, 林欣慧 (Cheng et al.), 2005, 汽機車年平均行駛里程分析, 機械工業雜誌,272期.
徐小紅, 劉泉山(Hsu and Liu), 2005, 汽油烴組成對排放的影響, 汽車工藝與材料, 2005年第3期.
翁閎政(Weng H.C.), 1998, 機車排氣之揮發性有機物特徵及光化反應性研究, 國立成功大學環境工程學系碩士論文.
王建鴻(Wang C.H.), 2000, 乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究, 國立成功大學環境工程學系碩士論文.
趙浩然(Chao H.R.), 2000, 多種機動車輛排放醛酮化合物之研究, 國立成功大學環境工程學系博士論文.
劉育穎(Liu Y.Y.), 2001, 機車排放醛酮化合物特徵與光化反應性研究, 國立成功大學環境工程學系碩士論文.
王怡靜(Wang, I.J.), 2002, 含氧添加劑對車用無鉛汽油引擎排放多環芳香烴特徵之影響, 國立成功大學環境工程學系碩士論文.
陳志強(Chen, J.J), 2002, 汽油油品及引擎排放廢氣中金屬元素之特徵, 國立成功大學環境工程學系碩士論文.
陳峰毅(Chen, F.Y.), 2002, 不同油品對機車引擎排放多環芳香烴特徵之影響, 南台科技大學化學工程系碩士論文.
陳婉菁(Chen, W.C.), 2002, 機車使用汽醇燃料排放揮發性有機物及臭氧前驅物分析研究, 國立中興大學碩士論文.
邱雅琪(Chiou Y.C.), 2004, 以異辛烷為汽油添加劑對機車引擎揮發性有機物及醛酮化合物排放之影響, 國立成功大學環境醫學研究所碩士論文.
黃其聰(Hwang C.T.), 2004, 醇類燃料對汽油引擎排氣分析研究, 中原大學碩士論文.
葉惠芬(Yeh, H.F.), 2004, 冷熱啟動測試機車排放揮發性有機物特徵之差異研究, 國立成功大學環境工程學系碩士論文.
游育欣(Yu, Y.H.), 2004, 車用汽油中替代含氧添加劑種類及含量對機車引擎排放多環芳香烴化合物之影響, 嘉南藥理科技大學環境工程與科學系碩士論文.
賴官保(Lai, K.P.), 2004, 混合燃料對機車引擎排放多環芳香烴化合物的影響, 嘉南藥理科技大學環境工程與科學系碩士論文.
陳厚良(Chen, H.L.), 2005, 替代性燃油-汽醇對機車引擎排放特性之研究, 屏東科技大學碩士論文.
張安伶(Chanf, A.L.), 2006, 油品成分對機車引擎排放氣態污染物影響研究, 國立成功大學環境工程學系碩士論文.
陳昱豪(Chen, J.H.), 2006, 油品成分對機車引擎排放揮發性有機物之影響, 國立台灣大學環境工程研究所碩士論文.
施俊宏(Shis, C.H.), 2007, 替代燃料對車用引擎污染排放特性之研究, 嘉南藥理科技大學環境工程與科學系碩士論文.
管大緯(Kuan, T.W.), 2007, 酒精汽油對機車引擎排放多環芳香烴化合物之特性研究, 嘉南藥理科技大學環境工程與科學系碩士論文.
藍彬文(Lan, B.W.), 2007, 乙醇、LPG及碳酸二甲酯(DMC)對SI噴射引擎排氣污染之研究, 國立彰化師範大學碩士論文
周欣慧(Chou, H.H.), 2008, 酒精汽油對不同里程車輛引擎排放氣態污染物影響研究, 國立成功大學環境工程學系碩士論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw