進階搜尋


下載電子全文  
系統識別號 U0026-2412201612354400
論文名稱(中文) 以模糊多準則決策建構資通資源規劃模式之研究
論文名稱(英文) A Study of Fuzzy Multi-Criteria Decision Making Model for ICT Resource Planning
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 105
學期 1
出版年 105
研究生(中文) 周瑋千
研究生(英文) Wei-Chien Chou
學號 R78971034
學位類別 博士
語文別 英文
論文頁數 58頁
口試委員 指導教授-李昇暾
口試委員-林清河
口試委員-翁頌舜
口試委員-李永銘
口試委員-耿伯文
口試委員-魏志平
中文關鍵字 資訊與通信科技基礎建設  電力規劃  多準則決策  整合策略  模糊TOPSIS  模糊凱利方格分析法 
英文關鍵字 ICT infrastructure  Power planning  Multiple criteria decision making  Aggregation strategy  Fuzzy TOPSIS  Repertory grid 
學科別分類
中文摘要 隨著資訊與通信科技(information and communications technology, ICT)公司提供更趨多元化的服務,對通信品質的要求更為嚴格,有效的電力規劃,才能提升對新技術發展的應變能力,進而創造最大利潤與競爭力。過去電力規劃賴於資深員工的內隱知識及經驗,但組織常面臨資深員工退休領域知識傳承的問題,如台灣最大的ICT公司-中華電信,因此本研究建構以專家內隱知識與經驗為基礎之系統化電力規劃模型,採用凱利方格分析法取得具共識之評估準則,並透過多準則決策方法之TOPSIS 正負理想解概念,用以評估營運績效。
本研究適用於群體決策情境,藉由決策者之間的共識的變異程度,來決定整合策略,並提出first aggregation與last aggregation兩種整合策略,first aggregation即是將個別決策者的決策矩陣整合為群體矩陣,last aggregation則是將別決策者正、負理想解的分離測度整合為群體分離度,進而由此兩種整合策略探討個別決策與群體結果的共識度。
決策過程中,決策者的態度往往影響評估結果至深,本研究定義嚴格度此參數,用以決定方案之間互相比較之勝敗次數,並解決重複排序之問題。在績效評估方面,以國內某大電信公司電力機房維運作為實例驗證對象,最後客觀量化分析排序結果,所提出的模型可協助ICT組織更有效的管理電力資源,進而獲得競爭優勢。
英文摘要 It is critical for information and communications technology (ICT) companies to carry our effective power planning, in order to support the growing number of services they provide, and this traditionally relies on the tacit knowledge and experience of senior staff. The loss of such domain knowledge resulting from the retirement of older staff is thus an important issue for organizations such as Chunghwa Telecomm (CHT), the largest ICT operator in Taiwan. This study therefore develops a novel power planning model using a multi-criteria operational performance evaluation, based on the senior staff’s tacit domain knowledge and experience.
A group version of the repertory grid and fuzzy TOPSIS approaches is applied to elicit a set of evaluation criteria that senior staff agree on, and then the priorities of the telecom rooms are evaluated against this. In extending TOPSIS to a group decision environment, the implementation of aggregation in the TOPSIS procedure would vary the final decision. A novel decision aggregation strategy with respect to the degree of variation among decision makers is thus proposed: (1) first aggregation: aggregating the individual decisions into a group, (2) last aggregation: aggregating the individual separation measures to a group.
In addition, a new factor, reflecting the attitudes of the decision makers with respect to the degree of strictness, is defined to determine the superiority and inferiority of each alternative compared to the others. Furthermore, a quantitative assessment is carried out to analyze its impact on the ranking results objectively. The proposed model may help ICT organizations to more effectively manage their power resources, and thus obtain competitive advantages.
論文目次 摘要 I
Abstract II
誌謝 IV
Content V
List of Figures VII
List of Tables VIII
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Motivation 2
1.3 Research Objectives 5
Chapter 2 Literature Review 7
2.1 Repertory Grids 7
2.2 TOPSIS 8
2.3 Group Decisions 9
Chapter 3 Research Methodology 16
3.1 Phase I: Operational performance measure 18
3.2 Phase II: Decision aggregation 22
3.2.1 First Aggregation 23
3.2.2 Last Aggregation 26
3.3 Individual Decision 27
Chapter 4 Experimental Results and Analysis 30
4.1 Phase I: Operational performance measure 30
4.2 Phase II: Decision aggregation 33
4.3 Phase III: Cluster alternatives 35
Chapter 5 Discussion 36
5.1 The result of the last aggregation strategy 36
5.2 The results of individual decision 38
5.3 Discussion of attitude factor 39
5.4 Quantitative assessment of aggregation strategies 40
5.5 Ranking analysis of λ values 42
5.6 Derive a planning policy for the power resources 43
Chapter 6 Conclusion and Future Work 46
6.1 Conclusion 46
6.2 Impact of decision analysis on decision makers 47
6.3 Managerial implications of P2M 49
6.4 Limitations and directions for future research 50
References 51
參考文獻 Adams-Webber, J. R. (2001). Prototypicality of self and evaluating others in terms of "fuzzy" constructs. Journal of Constructivist Psychology, 14 (4), 315-324.
Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37 (9), 6218-6224.
Ashleigh, M. J., & Nandhakumar, J. (2007). Trust and technologies: Implications for organizational work practices. Decision Support Systems, 43 (2), 607-617.
Banaitiene, N., Banaitis, A., Kaklauskas, A., & Zavadskas, E. K. (2008). Evaluating the life cycle of a building: A multivariant and multiple criteria approach. Omega, 36 (3), 429-441.
Barua, A., Mudunuri, L. S., & Kosheleva, O. (2014). Why trapezoidal and triangular membership functions work so well: Towards a theoretical explanation. Journal of Uncertain Systems, 8 (3), 164-168.
Beg, I., & Rashid, T. (2013). TOPSIS for hesitant fuzzy linguistic term sets. International Journal of Intelligent Systems, 28 (12), 1162-1171.
Belton, V., & Pictet, J. (1997). A framework for group decision using a MCDA model: Sharing, aggregating or comparing individual information?.Journal of Decision Systems, 6 (3), 283-303.
Ben-Arieh, D., Easton, T., & Evans, B. (2009). Minimum cost consensus with quadratic cost functions. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39 (1), 210-217.
Berl, A., Gelenbe, E., Girolamo, M. D., Giuliani, G., Meer, H. D., Dang, M. Q., & Pentikousis, K. (2010). Energy-efficient cloud computing. Computer Journal, 53 (7), 1045-1051.
Bhattacharya, A., Sarkar, B., & Mukherjee, S. K. (2007). Distance-based consensus method for ABC analysis. International Journal of Production Research, 45 (15), 3405-3420.
Blundell, J., Wittkowski, A., Wieck, A., & Hare, D. J. (2012). Using the repertory grid technique to examine nursing staff's construal of mothers with mental health problems. Clinical Psychology & Psychotherapy, 19 (3), 260-269.
Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36 (8), 11363-11368.
Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39 (3), 2341-2354.
Buyya, R., Yeo, C. S., Venugopal, S., & Brandic, J. B. I. (2009). Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25 (6), 599-616.
Cabrerizo, F. J., Alonso, S., & Herrera-Viedma, E. (2009). A consensus model for group decision making problems with unbalanced fuzzy linguistic information. International Journal of Information Technology & Decision Making, 8 (1), 109-131.
Cabrerizo, F. J., Moreno, J. M., P´erez, I. J., & Herrera-Viedma, E. (2010). Analyzing consensus approaches in fuzzy group decision making: Advantages and drawbacks. Soft Computing, 14 (5), 451-463.
Castro-Schez, J. J., Castro, J. L., & Zurita, J. M. (2004). Fuzzy repertory table: A method for acquiring knowledge about input variables to machine learning algorithm. IEEE Transactions on Fuzzy Systems, 12 (1), 123-139.
Castro-Schez, J. J., Jennings, N. R., Luo, X., & Shadbolt, N. R. (2004). Acquiring domain knowledge for negotiating agents: A case study.International Journal of Human-Computer Studies, 61 (1), 3-31.
Castro-Schez, J. J., Jiménez, L., Moreno, J., & Rodrigue, L. (2005). Using fuzzy repertory table-based technique for decision support. Decision Support Systems 39 (3), 293-307.
Chamodrakas, I., & Martakos, D. (2011). A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Applied Soft Computing, 11 (4), 3734-3743.
Chan, L. K., & Wu, M. L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega, 33 (2), 119-139.
Chang, Y. H., & Yeh, C. H. (2001). Evaluating airline competitiveness using multiattribute decision making. Omega, 29 (5), 405-415.
Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114 (1), 1-9.
Chen, S. M., & Lee, L. W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Systems with Applications, 37 (4), 2790-2798.
Chen, Y., Kilgour, M. D., & Hipel, K. W. (2008). A case-based distance method for screening in multiple-criteria decision aid. Omega, 36 (3), 373-383.
Chen, Z., & Yang, W. (2011). An MAGDM based on constrained FAHP and FTOPSIS and its application to supplier selection. Mathematical and Computer Modelling. 54 (11-12), 2802-2815.
Cho, V., & Wright, R. (2010). Exploring the evaluation framework of strategic information systems using repertory grid technique: A cognitive perspective from chief information officers. Behaviour & Information Technology, 29 (5), 447-457.
Costell, E., Tárrega, A., & Bayarri, S. (2010). Food acceptance: The role of consumer perception and attitudes.Chemosensory Perception, 3 (1), 42-50.
Chu, T. C. (2002). Facility location selection using fuzzy TOPSIS under group decisions, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems, 10 (6), 687-701.
Chu, T. C., & Lin, Y. C. (2009). An interval arithmetic based fuzzy TOPSIS model. Expert Systems with Applications, 36 (8), 10870-10876.
Dymova, L., Sevastjanov, P., & Tikhonenko, A. (2013). An approach to generalization of fuzzy TOPSIS method. Information Sciences, 238 (20), 149-162.
Emma, M., Kieran, S., & Vida, M. (2013). An assessment of sustainable housing affordability using a multiple criteria decision making method. Omega, 41 (2),270-279.
Feng, B., & Lai, F. (2014). Multi-attribute group decision making with aspirations: A case study. Omega, 44, 136–147.
García, F., Guijarro, F., & Moya, I. (2010). A goal programming approach to estimating performance weights for ranking firms. Computers & Operations Research, 37 (9), 1597–1609.
Han, J., Kamber, M., & Pei, J. (2005).Data mining: Concepts and techniques. Morgan Kaufmann.
Hatami-Marbini, A., & Tavana, M. (2011). An extension of the Electre I method for group decision-making under a fuzzy environment. Omega, 39 (4), 373-386.
Henson, S., Annou, M., Cranfield, J., & Ryks, J. (2008). Understanding consumer attitudes toward food technologies in Canada. Risk Analysis, 28 (6), 1601-1617.
Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1997). A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets and Systems, 88 (1), 31-49.
Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review of soft consensus models in a fuzzy environment. Information Fusion, 17, 4-13.
Ho, H. F. and Li, S. T. (2015). Using Mutually Validated Memories of Experts for Case-based Knowledge Systems. Knowledge-Based Systems, 86, 102-115.
Hsu, Y. Y., Tse, S. M., & Wu, B. (2003). A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11 (6), 671-690.
Hwang, G. J. (1999). A new environment for developing fuzzy expert systems.Journal of Information Science and Engineering, 15 (1), 53-69.
Hwang, C. L., & Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer, Berlin Heidelberg.
Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. Applied Mathematics and Computation, 181 (2), 1544-1551.
Kannan, D., Jabbour, A. B. L. S., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research, 233 (2), 432-447.
Kelemenis, A., & Askounis, D. (2010). A new TOPSIS-based multi-criteria approach to personnel selection. Expert Systems with Applications, 37 (7), 4999-5008.
Kelemenis, A., Ergazakis, K., & Askounis, D. (2011). Support managers’ selection using an extension of fuzzy TOPSIS. Expert Systems with Applications, 38 (3), 2774-2782.
Khalili-Damghani, K., Sadi-Nezhad, S., & Tavana, M. (2013). Solving multi-period project selection problems with fuzzy goal programming based on TOPSIS and a fuzzy preference relation. Information Sciences, 252, 42-61.
Khorshidi, R., Hassani, A., Honarbakhsh Rauof, A., & Emamy, M. (2013). Selection of an optimal refinement condition to achieve maximum tensile properties of Al-15%Mg2Si composite based on TOPSIS method. Materials & Design, 46, 442-450.
Kim, E., & Kohout, L. J. (2001). Generalized morphisms, a new tool for comparative evaluation of performance of fuzzy implications, t-norms and co-norms in relational knowledge elicitation. Fuzzy Sets and Systems, 117(2), 297-315.
Kobashikawa, C., Hatakeyama, Y., Dong, F., & Hirota, K. (2009). Fuzzy algorithm for group decision making with participants having finite discriminating abilities. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39 (1), 86-95.
Kou, G., Lu, Y., & Peng, Y. (2012). Evaluation of Classification Algorithms Using MCDM and Rank Correlation. International Journal of Information Technology & Decision Making, 11 (1), 197-225.
Kumar, A., Jain, V., & Kumar, S. (2014). A comprehensive environment friendly approach for supplier selection. Omega, 42 (1), 109-123.
Lee, D. H., & Park, D. (1997). An efficient algorithm for fuzzy weighted average. Fuzzy Sets and Systems, 87 (1), 39-45.
Lee, G., Jun, K. S., & Chung, E. S. (2015). Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method. Natural Hazards and Earth System Science, 15 (4), 863-874.
Li, D. F. (2007). A fuzzy closeness approach to fuzzy multi-attribute decision making. Fuzzy Optimization and Decision Making, 6 (3), 237-254.
Li, D. F. (2007). Compromise ratio method for fuzzy multi-attribute group decision making. Applied Soft Computing, 7 (3), 807-817.
Li, H., Adeli, H., Sun, J., & Han, J. G. (2011). Hybridizing principles of TOPSIS with case-based reasoning for business failure prediction. Computers & Operations Research, 38 (2), 409-419.
Li, X., & Chen, X. (2015). Multi-criteria group decision making based on trapezoidal intuitionistic fuzzy information. Applied Soft Computing, 30, 454-461.
Li, Z., Liechty, M., Xu, J., & Lev, B. (2014). A fuzzy multi-criteria group decision making method for individual research output evaluation with maximum consensus. Knowledge-Based Systems, 56, 253-263.
Liao, C. N. (2013). An evaluation model using fuzzy TOPSIS and goal programming for TOM Consultant selection. Journal of Testing and Evaluation, 41 (1), 122-130.
Liu, F., & Zhang, W. G. (2014). TOPSIS-Based Consensus Model for Group Decision-Making With Incomplete Interval Fuzzy Preference Relations. IEEE Transactions on Cybernetics, 44 (8), 1283-1294.
Mahdavi, I., Heidarzade, A., Sadeghpour-Gildeh, B., & Mahdavi-Amiri, N. (2009). A general fuzzy TOPSIS model in multiple criteria decision making. The International Journal of Advanced Manufacturing Technology, 45 (3), 406-420.
Mahdavi, I., Mahdavi-Amiri, N., Heidarzade, A., & Nourifar, R. (2008). Designing a model of fuzzy TOPSIS in multiple criteria decision making. Applied Mathematics and Computation, 206 (2), 607-617.
Marchant, T. (2007). A measurement-theoretic axiomatization of trapezoidal membership functions. IEEE Transactions on Fuzzy Systems, 15(2), 238-242.
Napier, N. P., Keil, M., & Tan, F. B. (2009). IT project managers' construction of successful project management practice: A repertory grid investigation. Information Systems Journal, 19 (3), 255-282.
Ness, J., & Hoffman, C. (1998). Putting sense into consensus: Solving the puzzle of making team decisions. Tacoma, Wash: VISTA Associations.
Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40 (7-8), 721-727.
Önüt, S., Kara, S. S., & Işik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company. Expert Systems with Applications, 36 (2), 3887-3895.
Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156 (2), 445-455.
Qi, X., Liang, C., & Zhang, J. (2015). Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment. Computers & Industrial Engineering, 79, 52-64.
Pang, J., & Liang, J. (2012). Evaluation of the results of multi-attribute group decision-making with linguistic information. Omega, 40 (3), 294-301.
Parkan, C., & Wu, M. U. (1999). Measurement of the performance of an investment bank using the operational competitiveness rating procedure. Omega, 27 (2), 201-217.
Peng, Y., Kou, G., Wang, G., & Shi, Y. (2011). FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms. Omega, 39 (6), 677-689.
Pérez, I. J., Cabrerizo, F. J., Alonso, S., & Herrera-Viedma, E. (2014). A new consensus model for group decision making problems with non-homogeneous. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 44 (4), 494-498.
Raju, K. S., & Duckstein, L. (2004). Integrated application of cluster and multicriterion analysis for ranking water resources planning strategies: a case study in Spain. Journal of Hydroinformatics, 6, 295-307.
Roghanian, E., Rahimi, J., & Ansari, A. (2010). Comparison of first aggregation and last aggregation in fuzzy group TOPSIS. Applied Mathematical Modelling, 34 (12), 3754-3766.
Rouhani, S., Ghazanfari, M., & Jafari, M. (2012). Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS. Expert Systems with Applications, 39 (3), 3764-3771.
Ryan, S., & O'Connor, R. (2009). Development of a team measure for tacit knowledge in software development teams. Journal of Systems and Software, 82 (2), 229-240.
Sadi-Nezhad, S., & Damghani, K. K. (2010). Application of a fuzzy TOPSIS method base on modified preference ratio and fuzzy distance measurement in assessment of traffic police centers performance. Applied Soft Computing, 10 (4), 1028-1039.
Saffarian, S., Shafiee, M., & Zaredar, N. (2014). A Novel Approach Toward Natural and Anthropogenic Risk Assessment of Gas Power Plants. Human and Ecological Risk Assessment: An International Journal, 20 (2), 346-365.
Sevastjanov, P., & Dymova, L. (2009). Stock screening with use of multiple criteria decision making and optimization.Omega, 37(3), 659-671.
Sharma, S., & Balan, S. (2013). An integrative supplier selection model using Taguchi loss function, TOPSIS and multi criteria goal programming. Journal of Intelligent Manufacturing, 24 (6), 1123-1130.
Shih, H. S., Wang, C. H., & Lee, E. S. (2004). A Multiattribute GDSS for Aiding Problem-Solving. Mathematical and Computer Modelling, 39 (11-12),1397-1412.
Siau, K., Tan, X., & Sheng, H. (2010). Important characteristics of software development team members: an empirical investigation using repertory grid. Information Systems Journal, 20 (6), 563-580.
Singh, R. K., & Benyoucef. L.(2013). A consensus based group decision making methodology for strategic selection problems of supply chain coordination. Engineering Applications of Artificial Intelligence, 26 (1), 122-134.
Su, Z. X., Chen, M. Y., Xia, G. P., & Wang, L. (2011). An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Systems with Applications, 38 (12), 15286-15295.
Sun, C. C., & Lin, G. T. R. (2009). Using fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites. Expert Systems with Applications, 36 (9), 11764-11771.
Tan, F. B., & Hunter, M. G. (2002). The repertory grid technique: a method for the study of cognition in information systems. MIS Quarterly, 26 (1), 39-57.
Tian, J., Yu, D., Yu, B., & Ma, S. (2013). A fuzzy TOPSIS model via chi-square test for information source selection. Knowledge-Based Systems, 37, 515-527.
Torfi, F., Zanjirani Farahani, R., & Rezapour, S. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 10 (2), 520-528.
Tseng, F. M., Chiu, Y. J., & Chen, J. S. (2009). Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies. Omega, 37 (3), 686-697.
Vahdani, B., Meysam Mousavib, S., Hashemib, H., Mousakhanic, M., & Tavakkoli-Moghaddamd, R. (2013). A new compromise solution method for fuzzy group decision-making problems with an application to the contractor selection. Engineering Applications of Artificial Intelligence, 26(2), 779-788.
Wang, J. W., Cheng, C. H., & Huang, K. C. (2009). Fuzzy hierarchical TOPSIS for supplier selection.Applied Soft Computing, 9(1), 377-386.
Wang, Y. J., & Lee, H. S. (2007). Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Computers & Mathematics with Applications, 53 (11), 1762–1772.
Whyte, G., & Bytheway, A. (1996). Factors affecting information systems’ success. International Journal of Service Industry Management, 7 (1), 74-93.
Whyte, G., Bytheway, A., & Edwards, C. (1997). Understanding user perceptions of information systems success. The Journal of Strategic Information Systems, 6 (1), 35–68.
Williams, S. R. (2001). Predications of the limit concept: An application of repertory grids. Journal for Research in Mathematics Education, 32 (4), 341-367.
Wu, J. (2015). A SD-IITFOWA operator and TOPSIS based approach for MAGDM problems with intuitionistic trapezoidal fuzzy numbers. Technological and Economic Development of Economy, 21 (1), 28-47.
Xiong, J., Tan, X., Yang, K. W., & Chen, Y. W. (2013). Fuzzy Group Decision Making for Multiobjective Problems: Tradeoff between Consensus and Robustness. Journal of Applied Mathematics, 2013, 1-9.
Yager, R. R. (2009). Weighted maximum entropy OWA aggregation with applications to decision making under risk. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39 (3), 555-564.
Yan, W., Chen, C. H., Chang, D., & Chong, Y. T. (2009). A stakeholder-oriented innovative product conceptualization strategy based on fuzzy integrals. Advanced Engineering Informatics, 23 (2), 201-209.
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28 (7), 839-844.
Yue, Z. (2012). Approach to group decision making based on determining the weights of experts by using projection method. Applied Mathematical Modelling, 36 (7), 2900–2910.
Yurdakul, M., & Tansel, I. Y. (2009). Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. Journal of Materials Processing Technology, 209 (1), 310-317.
Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research, 107 (3), 507-529.
Zhang, X., & Xu, Z. (2015). Soft computing based on maximizing consensus and fuzzy TOPSIS approach to interval-valued intuitionistic fuzzy group decision making. Applied Soft Computing, 26, 42-56.
Zopounidis, C. (1999). Multi criteria decision aid in financial management. European Journal of Operational Research, 119, 404-415.
Zouggari, A., & Benyoucef, L. (2012). Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem. Engineering Applications of Artificial Intelligence, 25 (3), 507-519.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw