進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202023134000
論文名稱(中文) 三層透明基板厚度及折射率量測系統與自動對焦顯微鏡之設計
論文名稱(英文) Design of Thickness and Refractive Index Measurement System and Auto-Focusing Microscope for Three-Layer of Transparent Substrates
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 翁子堯
研究生(英文) Tzu-Yao Weng
學號 N16071370
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 指導教授-劉建聖
口試委員-李永春
口試委員-羅裕龍
口試委員-張家源
中文關鍵字 雷射  自動對焦  顯微鏡  多層透明材質  光學檢測  厚度  折射率 
英文關鍵字 laser  auto-focusing  microscope  multi-layer transparent substrate  optical inspection  thickness  refractive index 
學科別分類
中文摘要 為解決大多自動對焦系統都無法計算待測物各別厚度與折射率之缺點,本論文提出一新型自動對焦系統,可同時量測三層透明基材厚度與折射率。在此系統中以光學基本定理之光的獨立傳播定律、折射定律與反射定律理論,結合光斑整形透鏡做為本實驗主要架構。
整體架構重點在於從待測物反射之雷射光斑特性,與已知待測物上下平面之間的相對關係方程式,藉由使用兩種不同的入射角度擷取光斑訊號,進行影像處理之二值化及分群法,可得到光斑各點之間距,代入方程式,即可計算出多層待測物之厚度與折射率。依照厚度與折射率的關係,使用得到的折射率與厚度,計算聚焦距離,完成自動對焦。
本論文使用Zemax光學模擬軟體分析系統特性,並測試影像處理效果是否可達成目的,並於模擬中達成同時量測厚度與折射率且誤差在0.08%範圍內,證明此系統的可行性。最終依照模擬參數,將此新系統之架構完整建置於光學桌上進行實驗與分析,在實際情況下,可利用此量測系統同時量測三層玻璃片之厚度與折射率,其量測厚度誤差2%及折射率誤差為2.4%,並依量測的數據可達成快速自動對焦之目的。
英文摘要 In order to solve the shortcomings that most of the auto-focus system cannot obtain individual thickness and refractive index of three transparent substrates, this thesis proposes a new type of auto-focus system that can simultaneously measure their thickness and refractive index. The main structure of this proposed system is based on the basic theorem of optics: the independent propagation law, refraction law and reflection law theory, and combined with the spot shaping lens. The key point of the overall structure is that the binary linear equation relation between the upper and lower planes of the object can be known by the laser spot reflected from the object. Using two different incident angles of laser beams, the CCDs capture the spot signal for image processing binarization and grouping. After the obtained points’ spacing is substituted into the equations, the thickness and refractive index of the multi-layer substrates can be calculated. According to the relation between thickness and refractive index, the system can use the obtained refractive index and thickness to calculate the focusing distance, so as to achieve auto-focusing. This thesis uses Zemax optical simulation software to analyze system characteristics, and tests the image processing effect. In the simulation, the thicknesses and refractive indices of three transparent substrates can be measured simultaneously. From the simulation results, the deviation of the simulated thickness and refractive index is about 0.08%. Finally, the thesis sets up the proposed system with simulation parameters on the optical table for further experiment and analysis. From experimental results, the deviation of measured thickness is about 2% and the deviation of measured refractive index is about 2.4%. In addition, the system can achieve fast auto-focusing purpose by using the measured thicknesses and refractive indices.
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 影像式自動對焦文獻回顧 4
2-2 光學式自動對焦文獻回顧 8
第三章 基礎理論 22
3-1 幾何光學基本原理 22
3-2 三角測距 24
3-3 影像處理技術 27
3-4 小結 31
第四章 系統架構與量測方法 32
4-1 元件介紹 32
4-2 量測系統架構 34
4-3 數學模型推導 35
4-4 量測方式 40
第五章 光學模擬 42
5-1 系統模擬架構 42
5-2 Zemax光斑模擬圖 44
5-3 實驗模擬 45
5-4 模擬結果 50
5-5 小結 58
第六章 實驗結果與討論 59
6-1 整形光斑效果 63
6-2 單層玻片量測結果 64
6-3 多層玻片量測結果 65
6-4 自動對焦系統實驗 78
第七章 結論與未來規劃 86
7-1 結論 86
7-2 未來規劃 87
參考文獻 88
附錄 100
參考文獻 [1]K. H. Chen, C. C. Hsu, and D. C. Su, “A method for measuring the complex refractive index and thickness of a thin metal film,” Appl. Phys. B-Lasers Opt., vol. 77, no. 8, pp. 839-842, 2003.
[2]M. A. Ghita et al., “Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma,” Oncol. Lett., vol. 11, no. 5, pp. 3019-3024, 2016.
[3]P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance Confocal Microscopy for In Vivo Skin Imaging,” Photochem. Photobiol., vol. 84, no. 6, pp. 1421-1430, 2008.
[4]I. K. Ilev, R. W. Waynant, K. R. Byrnes, and J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett., vol. 27, no. 19, pp. 1693-1695, 2002.
[5]C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, "Measuring the thickness of transparent objects using a confocal displacement sensor," in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017: IEEE, pp. 1-5.
[6]K. H. Kim, S. Y. Lee, S. Kim, and S. G. Jeong, “DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, no. 6, pp. 687-691, 2008.
[7]G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “DETERMINATION OF THE REFRACTIVE-INDEX OF HIGHLY SCATTERING HUMAN TISSUE BY OPTICAL COHERENCE TOMOGRAPHY,” Opt. Lett., vol. 20, no. 21, pp. 2258-2260, 1995.
[8]J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express, vol. 16, no. 10, pp. 7142-7160, 2008.
[9]Y. Y. Li et al., “Dual mode reflectance and fluorescence confocal laser scanning microscopy for in vivo imaging melanoma progression in murine skin,” J. Invest. Dermatol., vol. 125, no. 4, pp. 798-804, 2005.
[10]C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B-Lasers Opt., vol. 109, no. 2, pp. 259-268, 2012.
[11]S.-h. Jiang, "新型光學式自動聚焦顯微鏡的設計與其性能分析," National Central University, 2013.
[12]C. S. Liu and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., vol. 24, no. 10, p. 8, 2013.
[13]C. S. Liu, Y. C. Lin, and P. H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol., vol. 19, no. 11, pp. 1717-1724, 2013.
[14]C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B-Lasers Opt., vol. 117, no. 4, pp. 1161-1171, 2014.
[15]C. S. Liu and K. W. Lin, “Numerical and experimental characterization of reducing geometrical fluctuations of laser beam based on rotating optical diffuser,” Opt. Eng., vol. 53, no. 12, p. 8, 2014.
[16]C. S. Liu and S. H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng., vol. 66, pp. 294-300, 2015.
[17]C. S. Liu, Z. Y. Wang, and Y. C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B-Lasers Opt., vol. 121, no. 1, pp. 69-80, 2015.
[18]楊駿億, “光學式自動聚焦系統之雙共軛與刀緣重心法之比較,” 中正大學機械工程學系學位論文, pp. 1-67, 2016.
[19]C. S. Liu, R. C. Song, and S. J. Fu, “Design of a laser-based autofocusing microscope for a sample with a transparent boundary layer,” Appl. Phys. B-Lasers Opt., vol. 125, no. 11, p. 12, 2019.
[20]S. Schaefer, S. A. Boehm, and K. J. Chau, “Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities,” Appl. Optics, vol. 51, no. 14, pp. 2581-2588, 2012.
[21]M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, “Fast autofocus algorithm for automated microscopes,” Opt. Eng., vol. 44, no. 6, p. 8, 2005.
[22]H. C. Chang, T. M. Shih, N. Z. Chen, and N. W. Pu, “A microscope system based on bevel-axial method auto-focus,” Opt. Lasers Eng., vol. 47, no. 5, pp. 547-551, 2009.
[23]S. Yousefi, M. Rahman, and N. Kehtarnavaz, “A New Auto-Focus Sharpness Function for Digital and Smart-Phone Cameras,” IEEE Trans. Consum. Electron., vol. 57, no. 3, pp. 1003-1009, 2011.
[24]C. Y. Chen, R. C. Hwang, and Y. J. Chen, “A passive auto-focus camera control system,” Appl. Soft. Comput., vol. 10, no. 1, pp. 296-303, 2010.
[25]S. Lee, J. Y. Lee, W. Z. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express, vol. 17, no. 8, pp. 6476-6486, 2009.
[26]P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Optics, vol. 47, no. 19, pp. D176-D182, 2008.
[27]T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Optics, vol. 48, no. 34, pp. H153-H159, 2009.
[28]S. J. Abdullah, M. M. Ratnam, and Z. Samad, “Error-based autofocus system using image feedback in a liquid-filled diaphragm lens,” Opt. Eng., vol. 48, no. 12, p. 9, 2009.
[29]C. H. Chen and T. L. Feng, “Fast 3D shape recovery of a rough mechanical component from real time passive autofocus system,” Int. J. Adv. Manuf. Technol., vol. 34, no. 9-10, pp. 944-957, 2007.
[30]G. K. Fu, Y. P. Cao, and M. T. Lu, “A fast auto-focusing method of microscopic imaging based on an improved MCS algorithm,” J. Innov. Opt. Health Sci., vol. 8, no. 5, p. 10, 2015.
[31]H. Oku, M. Ishikawa, Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express, vol. 14, no. 9, pp. 3952-3960, 2006.
[32]M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, “An Image Based Auto-Focusing Algorithm for Digital Fundus Photography,” IEEE Trans. Med. Imaging, vol. 28, no. 11, pp. 1703-1707, 2009.
[33]S. L. Brazdilova and M. Kozubek, “Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions,” Journal of Microscopy, vol. 236, no. 3, pp. 194-202, 2009.
[34]Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system for high-resolution cell biological imaging,” Journal of Microscopy, vol. 221, pp. 145-151, 2006.
[35]E. F. Wright, D. M. Wells, A. P. French, C. Howells, and N. M. Everitt, “A low-cost automated focusing system for time-lapse microscopy,” Meas. Sci. Technol., vol. 20, no. 2, p. 4, 2009.
[36]K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics, vol. 2, no. 5, pp. 311-314, 2008.
[37]C. W. Chiu, P. C. P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2582-2584, 2007.
[38]J. H. Lee, Y. S. Kim, S. R. Kim, I. H. Lee, and H. J. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng., vol. 46, no. 7, pp. 558-569, 2008.
[39]J. Liu et al., “Robust autofocusing method for multi-wavelength lensless imaging,” Opt. Express, vol. 27, no. 17, pp. 23814-23829, 2019.
[40]S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express, vol. 16, no. 12, pp. 8670-8677, 2008.
[41]R. M. Wasserman, P. G. Gladnick, and K. W. Atherton, "Systems and methods for rapidly automatically focusing a machine vision inspection system," ed: Google Patents, 2006.
[42]J. Jeon, I. Yoon, D. Kim, J. Lee, and J. Paik, “Fully Digital Auto-Focusing System with Automatic Focusing Region Selection and Point Spread Function Estimation,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1204-1210, 2010.
[43]K. Koh, J. G. Kuk, B. Jin, W. Choi, and N. I. Cho, “Autofocus method using dual aperture and color filters,” J. Electron. Imaging, vol. 20, no. 3, p. 6, 2011.
[44]M. Yamana, N. Nagasawa, H. Konishi, and Y. Takahama, "Automatic focal-point sensing apparatus sensing high and low magnification," ed: U.S. Patent No 5245173, 1993.
[45]D. Pristinski, V. Kozlovskaya, and S. A. Sukhishvili, “Determination of film thickness and refractive index in one measurement of phase-modulated ellipsometry,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol. 23, no. 10, pp. 2639-2644, 2006.
[46]A. Evmenova, V. Odarych, and M. Vuichyk, “Ellipsometric investigation of CdTe films,” Opt. Appl., vol. 42, no. 3, pp. 667-675, 2012.
[47]M. Muth, R. P. Schmid, and K. Schnitzlein, “Ellipsometric study of molecular orientations of Thermomyces lanuginosus lipase at the air-water interface by simultaneous determination of refractive index and thickness,” Colloid Surf. B-Biointerfaces, vol. 140, pp. 60-66, 2016.
[48]C. Chou, H. K. Teng, C. J. Yu, and H. S. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun., vol. 273, no. 1, pp. 74-83, 2007.
[49]H. G. Tompkins, "A User’s Guide to Ellipsometry 1993," ed: Academic Press.
[50]S. Srisuwan, C. Sirisathitkul, and S. Danworaphong, “Validiation of Photometric Ellipsometry for Refractive Index and Thickness Measurements,” MAPAN-J. Metrol. Soc. India, vol. 30, no. 1, pp. 31-36, 2015.
[51]謝余松, 盧宥任, and 張益三, “快速橢偏單層膜計算模組開發,” 科儀新知, no. 188, pp. 40-48, 2012.
[52]S. Ozharar, D. Akcan, and L. Arda, “Determination of the refractive index and the thickness of double side coated thin films,” J. Optoelectron. Adv. Mater., vol. 18, no. 1-2, pp. 65-69, 2016.
[53]R. Swanepoel, “DETERMINATION OF THE THICKNESS AND OPTICAL-CONSTANTS OF AMORPHOUS-SILICON,” Journal of Physics E-Scientific Instruments, vol. 16, no. 12, pp. 1214-1222, 1983.
[54]T. Pisarkiewicz, A. Czapla, and H. Czternastek, “INFLUENCE OF THICKNESS INHOMOGENEITY ON THE DETERMINATION OF OPTICAL-CONSTANTS OF AMORPHOUS-SILICON THIN-FILMS,” Appl. Surf. Sci., vol. 65-6, pp. 511-514, 1993.
[55]L.-J. Lai, "差動式疊紋自動對焦系統," National Central University, 2011.
[56]J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the moire method,” Measurement, vol. 44, no. 10, pp. 1793-1800, 2011.
[57]J. Y. Lee, Y. J. Lin, Y. H. Wang, and C.-S. Liu, "Development of an auto-focus system by the moiré method," in 10th International Symposium on Measurement and Quality Control 2010, ISMQC 2010, 2010, pp. 485-488.
[58]T. Anna, V. Srivastava, D. S. Mehta, and C. Shakher, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells,” Appl. Optics, vol. 50, no. 34, pp. 6343-6351, 2011.
[59]P. Balling, P. Masika, P. Kren, and M. Dolezal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol., vol. 23, no. 9, p. 13, 2012.
[60] G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Optics, vol. 42, no. 19, pp. 3882-3887, 2003.
[61] J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Optics, vol. 48, no. 13, pp. 2461-2467, 2009.
[62]S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express, vol. 16, no. 8, pp. 5516-5526, 2008.
[63]M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett., vol. 23, no. 12, pp. 966-968, 1998.
[64]T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett., vol. 21, no. 23, pp. 1942-1944, 1996.
[65]W. V. Sorin and D. F. Gray, “SIMULTANEOUS THICKNESS AND GROUP INDEX MEASUREMENT USING OPTICAL LOW-COHERENCE REFLECTOMETRY,” IEEE Photonics Technol. Lett., vol. 4, no. 1, pp. 105-107, 1992.
[66]S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express, vol. 22, no. 22, pp. 27392-27397, 2014.
[67]C. Moreno-Hernandez, D. Monzon-Hernandez, I. Hernandez-Romano, and J. Villatoro, “Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample,” Opt. Express, vol. 23, no. 17, pp. 22141-22148, 2015.
[68]J. Park, J. Bae, J. Jin, J. A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express, vol. 23, no. 26, pp. 32941-32949, 2015.
[69]Y. Wang, L. R. Qiu, W. Q. Zhao, M. M. Song, and Z. G. Li, “Broad wavelength range infrared lens refractive index measurement using confocal tomography,” Opt. Express, vol. 25, no. 23, pp. 28674-28683, 2017.
[70]A. Schick, "Confocal displacement sensor," ed: U.S. Patent No 7271919, 2007.
[71]Y.-H. Wang et al., "Dual-confocal auto-focus sensing system in ultrafast laser application," in SENSORS, 2010 IEEE, 2010: IEEE, pp. 486-489.
[72]L. C. Chen, D. T. Nguyen, and Y. W. Chang, “Precise optical surface profilometry using innovative chromatic differential confocal microscopy,” Opt. Lett., vol. 41, no. 24, pp. 5660-5663, 2016.
[73]W. C. Kuo, Y. K. Bou, and C. M. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol., vol. 24, no. 7, p. 5, 2013.
[74]J. Poris, "Dual spot confocal displacement sensor," ed: U.S. Patent No 6657216, 2003.
[75]G. Min, J. W. Kim, W. J. Choi, and B. H. Lee, “Numerical correction of distorted images in full-field optical coherence tomography,” Meas. Sci. Technol., vol. 23, no. 3, p. 9, 2012.
[76]G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express, vol. 21, no. 24, pp. 29955-29967, 2013.
[77]J. N. Yao, J. X. Huang, P. Meemon, M. Ponting, and J. P. Rolland, “Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system,” Opt. Express, vol. 23, no. 23, pp. 30149-30164, 2015.
[78]T. Boettcher, M. Gronle, and W. Osten, “Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT),” Opt. Express, vol. 25, no. 9, pp. 10204-10213, 2017.
[79]T. Boettcher, M. Gronle, and W. Osten, "Single-shot multilayer measurement by chromatic confocal coherence tomography," in Optical Measurement Systems for Industrial Inspection X, 2017, vol. 10329: International Society for Optics and Photonics, p. 103290K.
[80]C. H. Liu, C. C. Liu, and W. C. Huang, “Application of astigmatic method and snell's law on the thickness and refractive index measurement of a transparent plate,” Microsyst. Technol., vol. 19, no. 11, pp. 1761-1766, 2013.
[81]C. H. Liu and Z. H. Li, “Application of the astigmatic method to the thickness measurement of glass substrates,” Appl. Optics, vol. 47, no. 21, pp. 3968-3972, 2008.
[82]D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “AUTOMATIC FOCUS CONTROL - THE ASTIGMATIC LENS APPROACH,” Appl. Optics, vol. 23, no. 4, pp. 565-570, 1984.
[83]W. Y. Hsu et al., “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol., vol. 20, no. 4, p. 9, 2009.
[84]W. A. Miller, “SMITH,WJ - MODERN OPTICAL ENGINEERING - DESIGN OF OPTICAL SYSTEMS,” IEEE Spectr., vol. 4, no. 8, pp. 168-&, 1967.
[85]C. H. Liu, S. C. Yeh, and H. L. Huang, “Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups,” Appl. Optics, vol. 49, no. 4, pp. 637-643, 2010.
[86]H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, no. 7, p. 5, 2009.
[87]Y. Fujimoto, H. Endo, T. Yoneyama, and Y. Amano, "Focus detecting device for an optical apparatus," ed: U.S. Patent No 6649893, 2003.
[88]S. J. Lee and D. Y. Chang, “A laser sensor with multiple detectors for freeform surface digitization,” Int. J. Adv. Manuf. Technol., vol. 31, no. 11-12, pp. 1181-1190, 2007.
[89]J. Rasanen and K. E. Peiponen, “On-line measurement of the thickness and optical quality of float glass with a sensor based on a diffractive element,” Appl. Optics, vol. 40, no. 28, pp. 5034-5039, 2001.
[90]B. X. Cao, P. Le Hoang, S. Ahn, H. Kang, J. Kim, and J. Noh, “High-Speed Focus Inspection System Using a Position-Sensitive Detector,” Sensors, vol. 17, no. 12, p. 11, 2017.
[91]平田和也,原口康史,シグマ光機株式会社, "フォーカス調整装置及び方法 Focus adjustment device and method," ed: JP Patent No 2012113174A, 2012.
[92]J. A. Kim, J. W. Kim, T. B. Eom, J. Jin, and C. S. Kang, “Vibration-insensitive measurement of thickness variation of glass panels using double-slit interferometry,” Opt. Express, vol. 22, no. 6, pp. 6486-6494, 2014.
[93]R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.
[94]J. P. Crooks et al., “A CMOS Image Sensor With In-Pixel ADC, Timestamp, and Sparse Readout,” IEEE Sens. J., vol. 9, no. 1-2, pp. 20-28, 2009.
[95]A. Spivak, A. Belenky, and O. Yadid-Pecht, “Very Sensitive Low-Noise Active-Reset CMOS Image Sensor With In-Pixel ADC,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 63, no. 10, pp. 939-943, 2016.
[96]F. A. Jenkins and H. E. White, "Fundamentals of optics," ed: McGraw-Hill, 2001.
[97]W. J. Smith, Modern optical engineering. Tata McGraw-Hill Education, 2008.
[98]P. D. Lin, New computation methods for geometrical optics. Springer, 2014.
[99]M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.
[100]J. H. Wu et al., “Blind guidance system based on laser triangulation,” Opt. Eng., vol. 51, no. 5, p. 8, 2012.
[101]J. Elazar, S. Selmic, M. Tomic, and M. Prokin, “A fibre-optic displacement sensor for a cyclotron environment based on a modified triangulation method,” J. Opt. A-Pure Appl. Opt., vol. 4, no. 6, pp. S347-S355, 2002.
[102]Q. P. Li, F. Ding, and P. Fang, “Flash CCD laser displacement sensor,” Electron. Lett., vol. 42, no. 16, pp. 910-912, 2006.
[103]G. Bitelli, A. Simone, F. Girardi, and C. Lantieri, “Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture,” Sensors, vol. 12, no. 7, pp. 9110-9128, 2012.
[104]J. P. Peterson and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces,” Appl. Optics, vol. 45, no. 20, pp. 4916-4926, 2006.
[105]A. J. Tuononen, “Laser triangulation to measure the carcass deflections of a rolling tire,” Meas. Sci. Technol., vol. 22, no. 12, p. 8, 2011.
[106]G. Manneberg, S. Hertegard, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng., vol. 40, no. 9, pp. 2041-2044, 2001.
[107]D. Ehlert, H. J. Horn, and R. Adamek, “Measuring crop biomass density by laser triangulation,” Comput. Electron. Agric., vol. 61, no. 2, pp. 117-125, 2008.
[108]D. Bracun, V. Gruden, and J. Mozina, “A method for surface quality assessment of die-castings based on laser triangulation,” Meas. Sci. Technol., vol. 19, no. 4, p. 8, 2008.
[109]Z. Zhang et al., “A new laser displacement sensor based on triangulation for gauge real-time measurement,” Opt. Laser Technol., vol. 40, no. 2, pp. 252-255, 2008.
[110]K. C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integr. Manuf. Syst., vol. 10, no. 4, pp. 277-285, 1997.
[111]Y. Nishio, "Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program," ed: U.S. Patent No 7489410, 2009.
[112]M. M. Klimanov, “Triangulating laser system for measurements and inspection of turbine blades,” Meas. Tech., vol. 52, no. 7, pp. 725-731, 2009.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw