進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202022283300
論文名稱(中文) 壓電制動無閥式微泵浦並聯之分析及優化
論文名稱(英文) The Simulation and Optimization of a Piezoelectrically Actuated Valveless Parallel Micropump
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 張惇喆
研究生(英文) Tun-Che Chang
學號 N16071176
學位類別 碩士
語文別 中文
論文頁數 118頁
口試委員 指導教授-賴新一
口試委員-陳朝光
口試委員-黃佑民
口試委員-林榮慶
口試委員-黃培興
中文關鍵字 無閥微泵浦  並聯微泵浦  數值方法  壓電致動器 
英文關鍵字 Valveless micropumps  Parallel micropumps  Numerical method  Piezoelectric actuator 
學科別分類
中文摘要 本篇研究為利用數值模擬分析軟體ANSYS探討壓電制動無閥式微泵浦在不同邊界條件及操作條件下的效能變化;其幾何及操作變量包含泵浦的並聯配置、彈性薄膜的厚度、壓電制動器的配置、腔體之幾何外型以及驅動相位角的變化。分析模型包含了流體域及固體域,因此採用雙向流固耦合作為分析方法,藉由流體固體交界面(FSI)做為資訊交換媒介,將固體之變形量傳遞至流體,並將流體域的壓力變化傳遞至固體域,作為彼此之邊界條件後進行迭代運算。
本研究首先探討了無閥式微泵浦的傳統模型與並聯模型之間的效能差異,包括泵浦流量以及可承受之最大背壓;在操作電壓為100V之交流電時,並聯模型的最大流量為3.18(ml/min),其為傳統模型最大流量的1.64倍,並將泵浦之水動力提升32%;而背壓方面,由於漸擴管/漸縮管的截面積變為兩倍,導致其流量受壓力影響增加,比起傳統模型下降了25%。在薄膜厚度的研究方面,探討了厚度在0.25mm-0.6mm區間內對流量的影響,結果顯示0.35mm時會有最大的流量表現;而雙壓電制動器的配置也成功的提升了流量22%與背壓112.5%的表現,之後將上述之優化條件整合為一並聯模型後,研究不同的驅動相位角對流量、背壓之影響,其結果顯示相位角為 時具有最佳流量及背壓表現,與相位角為 時相比,提升了流量63.56%與背壓22.5%。再比較了腔體內部流線分布後,以增加腔內渦流區範圍及密度為目標,引入仿生魟型腔體結構,提高合成射流現象,增加流量效率30%。
英文摘要 This study is to use the numerical simulation analysis software ANSYS to investigate the performance changes of the piezoelectric brake valveless micropump under different boundary conditions and operating conditions; its geometric and operating variables include the parallel configuration of the pump, the thickness of the elastic film, and the piezoelectric The configuration of the brake, the geometric shape of the cavity and the change of the driving phase angle. The analysis model includes the fluid domain and the solid domain. Therefore, the two-way fluid-solid coupling is used as the analysis method. The fluid-solid interface (FSI) is used as the information exchange medium to transfer the deformation of the solid to the fluid and the pressure in the fluid domain The changes are transferred to the solid domain and used as boundary conditions for each other to perform iterative operations.

This research first explores the performance difference between the traditional valveless micropump model and the parallel model, including the pump flow rate and the maximum tolerable back pressure; when the operating voltage is 100V AC, the maximum flow rate of the parallel model is 3.18 (ml/min), which is 1.64 times the maximum flow rate of the traditional model, and increases the hydraulic power of the pump by 32%. In terms of back pressure, the cross-sectional area of the diffuser/nozel doubles, resulting in The flow rate is increased by pressure, which is 25% lower than the traditional model. In the study of film thickness, the effect of thickness on the flow rate in the range of 0.25mm-0.6mm was discussed. The results showed that the maximum flow performance was at 0.35mm; and the configuration of the dual piezoelectric brake also successfully increased the flow by 22% The performance of 112.5% and the back pressure. After integrating the above optimization conditions into a parallel model, the effect of different driving phase angles on flow and back pressure was studied. The results showed that the best flow and back pressure performance was obtained when the phase angle was long. Compared with the phase angle, the flow rate is 63.56% and the back pressure is 22.5%. After comparing the streamline distribution inside the cavity, aiming to increase the range and density of the vortex zone in the cavity, the bionic stingray cavity structure is introduced to improve the synthetic jet phenomenon and increase the flow efficiency by 30%.
論文目次 摘要 II
Extend Abstract III
致謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIV
符號表 XVIII
第一章 緒論 1
1.1研究動機 1
1.2研究目的 3
1.3本文架構 4
第二章 文獻回顧 5
2.1單腔體漸擴管/漸縮管微泵浦文獻回顧 5
2.2雙腔體並聯文獻回顧 11
2.3本研究之基本假設 13
第三章 研究理論 14
3.1本研究之理論流程 14
3.2無閥式微泵浦工作原理 15
3.3無閥式微泵浦之結構與流場統御方程 17
3.3.1結構域統御方程 17
3.3.2流體域統御方程 19
3.3.3統御方程式之邊界條件 20
3.4無閥式微泵浦數學模型 22
3.4.1無閥微泵浦壓電致動器數學模型 22
3.4.2單腔體無閥式微泵浦數學模型 22
3.4.3雙腔體為泵浦並聯之數學模型 26
3.5數值估算步驟與流程 30
3.5.1有限元素系統結構模型建構 31
3.5.2有限體積系統流場模型建構 31
3.5.3流固耦合整合模型與數值方法 34
3.6泵浦效能之計算 38
3.6.1流量之計算 38
3.6.2背壓之計算 40
3.6.3水動力之計算 40
第四章 數值模擬與結果分析比對 41
4.1微泵浦並聯模型之數值模擬條件測試比對 41
4.1.1壓電制動器規格與操作條件 43
4.1.2網格收斂條件 45
4.1.3時間步階收斂條件 51
4.1.4微泵浦模型的流體運動與流量分析 53
4.1.5驅動頻率對流量與背壓的影響 56
4.1.6雙腔並聯與單腔體結果之比較 60
4.2制動器幾何參數對泵浦性能之影響 66
4.2.1彈性薄膜厚度的影響 66
4.2.2雙壓電驅動的影響 71
4.3流量與背壓受相位角及驅動頻率之影響 77
4.3.1相位角對流量的影響 77
4.3.2相位角對背壓的影響 79
4.4泵浦效能提升與流場動態特性改善之設計例 81
4.4.1泵浦效能之提升分析 81
4.4.2泵浦之流場動態特性分析 87
4.5魟型腔體對無閥微泵浦整體效能提升與特性改善之設計例 93
4.5.1魟型腔體泵浦對流量與背壓的影響 93
4.5.2魟型雙腔體泵浦對系統整體效率的影響 109
第五章 結論與未來展望 112
5.1結論 112
5.2未來與展望 115
參考文獻 116

參考文獻 [1] Morris, C. J., and Fred K. F. "Low-order modeling of resonance for fixed-valve micropumps based on first principles." Journal of Microelectromechanical Systems 12.3 (2003): 325-334.
[2] Kim, Y. S. "Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219.10 (2005): 1139-1145.
[3] Stemme, E., and Stemme, G.,"A valveless diffuser/nozzle-based fluid pump." Sensors and Actuators A: physical 39.2 (1993): 159-167.
[4] Olsson, A., Stemme, G., and Stemme, E., "A valve-less planar fluid pump with two pump chambers." Sensors and Actuators A: Physical 47.1-3 (1995): 549-556.
[5] Izzo, I., "Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves." Sensors and Actuators A: Physical 133.1 (2007): 128-140.
[6] Wang, A. B., and Ming-Che H., "Unveiling the missing transport mechanism inside the valveless micropump." Lab on a Chip 12.17 (2012): 3024-3027.
[7] Nisar, A., et al. "Multifield analysis of a piezoelectrically actuated valveless micropump." Sensors Transducers J 94 (2008): 176-95.
[8] Singh, S., et al. "Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump." Sensors and Actuators A: Physical 225 (2015): 81-94.
[9] Guo, Li, et al. "Valveless piezoelectric micropump of parallel double chambers." International Journal of Precision Engineering and Manufacturing 13.5 (2012): 771-776.
[10] ANSYS 17.0 Help:Mechanical APDL
[11] 李輝煌. ANSYS 工程分析基礎與觀念. 高立圖書有限公司 2005 年.
[12] Gerlach, T, and Helmut W., "Working principle and performance of the dynamic micropump." Sensors and Actuators A: Physical 50.1-2 (1995): 135-140.
[13] Olsson, A., et al. "Valve-less diffuser micropumps fabricated using thermoplastic replication." Sensors and Actuators A: Physical 64.1 (1998): 63-68.
[14] Tsui, Y. Y. and Lu, S. L., "Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses." Sensors and Actuators A: Physical 148.1 (2008): 138-148..
[15] Azarbadegan, A., et al. "Analysis of double-chamber parallel valveless micropumps." Microfluidics and Nanofluidics 9.2-3 (2010): 171-180.
[16] Hsu, Y. C. "Optimum design and investigation on diffuser polymethylmethacrylate (PMMA) peristaltic micropumps." 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009.
[17] Eames, I., Azarbadegan, A., and Zangeneh, M., "Analytical model of valveless micropumps." Journal of Microelectromechanical Systems 18.4 (2009): 878-883.
[18] Yang, C. C., et al. "The performance analysis of valveless micropump with contoured nozzle/diffuser." International Journal of Mechanical and Mechatronics Engineering 5.2 (2011): 508-513.
[19] Ashraf, M. W., et al. "Simulation of piezoelectric actuator and investigation of flow rate using PZT infusion pump for wearable artificial kidney." Energy Procedia 13 (2011): 5016-5021.
[20] Ullmann, A., and Yehuda T., "The piezoelectric valve-less pump: series and parallel connections." Journal of Fluids Engineering 137.2 (2015).
[21] Zhang, J. H., Wang, Y., and Huang, J., "Advances in valveless piezoelectric pump with cone-shaped tubes." Chinese Journal of Mechanical Engineering 30.4 (2017): 766-781.
[22] Guan, Y. F., and Li, X., "Analysis of vibrational performance of a piezoelectric micropump with Diffuse/Nozzle microchannel." Nanotechnology and Precision Engineering 1.2 (2018): 138-144.
[23] Wang, T., et al. "Study of the vortex based virtual valve micropump." Journal of Micromechanics and Microengineering 28.12 (2018): 125007.
[24] Yazdi, F., Fouad, S. A., Corigliano, A., and Ardito, R., "3-D design and simulation of a piezoelectric micropump." Micromachines 10.4 (2019): 259.
[25] Tang, M., et al. "Design and Experimental Verification of a PZT Pump with Streamlined Flow Tubes." Applied Sciences 9.18 (2019): 3881..
[26] Timoshenko, S. P., and Sergius, W. K. Theory of Plates and Shells. McGraw-hill, 1959.
[27] Yamahata, C., Lacharme, F., and Martin, A. G., "Glass valveless micropump using electromagnetic actuation." Microelectronic Engineering 78 (2005): 132-137.
[28] Nguyen, N. T., and Huang, X., "Miniature valveless pumps based on printed circuit board technique." Sensors and Actuators A: Physical 88.2 (2001): 104-111.
[29] Guu, Y. H., Hocheng, H., and Chang, C. H., "Study of piezoelectrically actuated micropumps with multiple parallel chambers." Materials and Manufacturing Processes 23.2 (2008): 209-214.
[30] 衛部醫器輸字第 030344 號 “Medtronic” MiniMed 640G Pump System
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw