進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202022272300
論文名稱(中文) 可用於小型機器人之彈性腳與感測器整合之研發
論文名稱(英文) The development of compliant legs and sensor integration methods for a small robot
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 李崇瑋
研究生(英文) Chung-Wei Lee
學號 N98981250
學位類別 博士
語文別 英文
論文頁數 94頁
口試委員 指導教授-周榮華
口試委員-王宗一
口試委員-侯廷偉
口試委員-何明字
口試委員-吳村木
口試委員-黎靖
中文關鍵字 模型  彈性腳部  接觸式感測器  感測器整合  地面反作用力 
英文關鍵字 modeling  compliant leg  touch sensor  sensor integration  GRF 
學科別分類
中文摘要 本文的目的在於發展可用於小型機器人之彈性腳與感測器整合。為了達成目標,本研究整合了運動學模型、彈性腳設計與接觸式感測器。針對運動學建模,提出了七連桿和五連桿之連續旋轉機構之模型。對於後續機構實驗驗證與感測器整合演算法,這些基於運動學所提出之模型包含的方程式皆已經過驗證可以使用。針對彈性腳部機構有兩種新型的設計,其一為混合式彈性腳設計,其二為平面式彈性設計。經由實驗結果得知,前者之設計可在腳部著地時回收衝擊能量(達總吸收能量30%),後者則可配合接觸式感測器進行整合運算成功量測地面反作用力(GRF,ground reaction force)。為了配合可運用於小型機器人之構想,本研究研發出一種具有小尺寸與輕重量特點之新型非陣列式接觸感測器。經驗證結果得知,此接觸感測器在配合所提出之感測器整合演算法時,可以量測到機器人運動時,腳部對地面的垂直與水平方向之反作用力,其正規化均方根误差(normalized root mean square (RMS) error)分別為11.9% 和27.9%。此外一種可配合接觸式感測器之機器手指亦被實現,配合感測器整合演算法,機器手指與平面之按壓力量與接觸角度可被同時量測。經實驗得知,其按壓力量與接觸角度之正規化均方根误差分別為 6% 與12%
英文摘要 The purpose of this dissertation is aimed to the development of the compliant legs and sensor integration methods for the potential application of small robots. To achieve the goal, kinematic modeling, design of compliant legs, and touch sensor are investigated. For kinematic modeling, the models of the seven-bar and five-bar continuous rotary leg mechanisms are adopted. The equations of the kinematic models are applied for the verification and sensor integration methods. Two types of the compliant leg are designed and implemented for the different needs. From the experimental results, the hybrid compliant leg can recycle the impact energy up to 30% of the total stored energy while leg landing, and the planar compliant can achieve the sensor integration for measuring the ground reaction force (GRF). For the touch sensor, a novel non-array touch sensor of small size is developed. By the developed sensor integration methods, the experimental results showed that the touch sensor can measure the vGRF (vertical ground reaction force) and hGRF (horizontal ground reaction force) with the normalized root mean square (RMS) error of 11.9% and 27.8%, respectively. In addition, the sensor integration method which can be applied in the present robotic finger for measuring the force and angle simultaneously is also implemented. The demonstration of robotic fingertip showed that the force and contact angle for surface tapping and button pushing can be obtained with the normalized RMS errors of 6% and 12%, respectively.
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
Contents IV
List of Tables VII
List of Figures VIII
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 Compliant leg 3
1.2.2 Touch sensor 8
1.3 Key Contributions of this Study 13
1.4 Dissertation Organization 14
Chapter 2 MODELING FOR LEG LINKAGES 16
2.1 Concepts of the Continuous Rotary Leg 16
2.2 Kinematic Models for the Continuous Rotary Leg 18
2.2.1 Model for seven-bar leg 18
2.2.2 Model for five-bar leg 21
Chapter 3 COMLIANT MECHANISMS FOR LEGS 25
3.1 Hybrid compliant leg 25
3.1.1 Design of hybrid compliant leg 25
3.1.2 Implemented robot with the hybrid compliant legs 28
3.2 Planar compliant leg 30
3.2.1 Design of planar compliant leg 30
3.2.2 Implemented robot with the planar compliant legs 33
Chapter 4 NOVEL NON-ARRAY TYPE TOUCH SENSOR 35
4.1 Sensor design and fabrication 35
4.2 Sensor modeling and characteristics 37
4.3 Sensor verification 42
Chapter 5 SENSOR INTEGRATION METHODS 47
5.1 Planar compliant leg 47
5.1.1 Method for vGRF 47
5.1.2 Method for hGRF 50
5.2 Robotic finger 52
Chapter 6 RESULTS AND DISCUSSION 58
6.1 Experimental set-up 58
6.1.1 Compliant legs 58
6.1.2 Force plate 60
6.1.3 Robotic finger 61
6.2 Results of compliant legs 62
6.2.1 Robot with the hybrid compliant legs 62
6.2.2 Robot with the planar compliant legs and sensor integration methods 67
6.2.3 Discussion 75
6.3 Robotic finger 77
6.3.1 Results 77
6.3.2 Discussion 80
Chapter 7 CONCLUSIONS 83
7.1 Conclusions 83
7.2 Future Work 84
REFERENCE 85
參考文獻 [1] Haldane, D. W., Peterson, K. C., Garcia Bermudez, F. L., and Fearing, R. S., 2013, "Animal-inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot," 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 3279-3286. DOI: 10.1109/ICRA.2013.6631034.
[2] Haldane, D. W., and Fearing, R. S., 2015, "Running Beyond the Bio-inspired Regime," 2005 IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 4539–4546. DOI: 10.1109/ICRA.2015.7139828
[3] Kim, S., Clark, J. E. and Cutkosky, M. R., 2006, "iSprawl: Design and Tuning for High-Speed Autonomous Open-Loop Running," International Journal of Robotics Research, 25(9), pp. 903–912. DOI: 10.1177/0278364906069150
[4] Pratt, J., Chew, C. M., Torres, A., Dilworth, P. and Pratt, G., "2001, Virtual Model Control: An Intuitive Approach for Bipedal Locomotion," International Journal of Robotics Research, 20(2), pp. 129–143. DOI: 10.1177/02783640122067309
[5] Kenneally, G., De, A. and Koditschek, D. E., 2016, "Design Principles for a Family of Direct-Drive Legged Robots," in IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 900-907, July 2016. DOI: 10.1109/LRA.2016.2528294.
[6] Topping, T. T., Kenneally, G. and Koditschek, D. E., 2017, "Quasi-static and Dynamic Mismatch for Door Opening and Stair Climbing with a Legged Robot," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 1080-1087. DOI: 10.1109/ICRA.2017.7989130.
[7] Wenger, G., De, A. and Koditschek, D. E., 2016, "Frontal Plane Stabilization and Hopping with a 2DOF Tail," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 567-573. DOI: 10.1109/IROS.2016.7759110.
[8] Park, H.-W., Wensing, P. M., and Kim, S., 2015, “Online Planning for Autonomous Running Jumps over Obstacles in High-speed Quadrupeds,” In Proceedings of. Robotics: Science and Systems, Rome, Italy, July.
[9] Park, H.-W., Chuah, M. Y., and Kim, S., 2014, “Quadruped Bounding Control with Variable Duty Cycle via Vertical Impulse Scaling,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), September 14-18, Chicago, IL, USA, pp.3245–3252.
[10] Bledt, G., Powell, M. J., Katz, B., Carlo, J. D., Wensing, P. M. and Kim, S., 2018, "MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 2245-2252. DOI: 10.1109/IROS.2018.8593885.
[11] Kalouche, S., 2017, "GOAT: A Legged Robot with 3D Agility and Virtual Compliance," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, pp. 4110–4117. DOI: 10.1109/IROS.2017.8206269
[12] Kau, N., Schultz, A., Ferrante, N. and Slade, P., 2019, "Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 6309-6315, doi: 10.1109/ICRA.2019.8794436.
[13] Seok, S., Wang, A., Chuah, M. Y., Hyun, D. J., Lee, J., Otten, D. M., Lang, J. H. and Kim, S., 2015, "Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot," IEEE/ASME Transactions on Mechatronics, 20(3), pp. 1117–1129. DOI: 10.1109/TMECH.2014.2339013
[14] Kalouche, S., Rollinson, D., and Choset, H., 2016, "Modularity for Maximum Mobility and Manipulation: Control of a Reconfigurable Legged Robot with Series-Elastic Actuators," 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics, West Lafayette, IN, USA, pp. 1-8. DOI: 10.1109/SSRR.2015.7442943
[15] Hutter, M., Gehring, C., Hoepflinger, M. A., Bloesch, M. and Siegwart, R., 2014, "Toward Combining Speed, Efficiency, Versatility, and Robustness in an Autonomous Quadruped," IEEE Transactions on Robotics, 30(6), pp. 1427-1440. DOI: 10.1109/TRO.2014.2360493
[16] Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., and Siegwart, R., 2012, “StarlETH: A Compliant Quadrupedal Robot for Fast, Efficient, and Versatile Locomotion,” in Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR), 2012.
[17] Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., et al., 2016, "ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 38–44. DOI: 10.1109/IROS.2016.7758092
[18] Bellicoso, C. D., Jenelten, F., Fankhauser, P., Gehring, C., Hwangbo, J. and Hutter, M., 2017, "Dynamic Locomotion and Whole-body Control for Quadrupedal Robots," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 3359-3365, doi: 10.1109/IROS.2017.8206174.
[19] Bellicoso, C. D., Jenelten, F., Gehring, C. and Hutter, M., 2018, "Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots," IEEE Robotics and Automation Letters, 3(3), pp. 2261–2268. DOI: 10.1109/LRA.2018.2794620
[20] Winkler, A. W., Bellicoso, C. D., Hutter, M. and Buchli, J., 2018, "Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization," in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560-1567, July 2018, doi: 10.1109/LRA.2018.2798285.
[21] Fankhauser, P., Bjelonic, M., Bellicoso, C. D., Miki, T. and Hutter, M., 2018, "Robust Rough-Terrain Locomotion with a Quadrupedal Robot," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018, pp. 5761-5768, doi: 10.1109/ICRA.2018.8460731.
[22] Murphy, M. P., Saunders, A., Moreira, C., Rizzi, A. A. and Raibert, M., 2011, "The LittleDog Robot," International Journal of Robotics Research, 30(2), pp. 145–149. DOI: 10.1177/0278364910387457
[23] Chen, J., Liu, Y., Zhao, J., et al., 2014, "Biomimetic Design and Optimal Swing of a Hexapod Robot Leg, " J. Bionic. Eng. 2014; 11: 26–35.
[24] Zhang, H., Liu, Y., Zhao, J., et al., 2014, "Development of a Bionic Hexapod Robot for Walking on Unstructured Terrain," J. Bionic. Eng. 2014; 11: 176–187.
[25] Chen, J., Liu, Y., Liu, G. and Zhao, J., 2017, "On the Utility of Leg Distal Compliance for Buffering Landing Impact of Legged Robots," Advances in Mechanical Engineering, 9(5), pp. 1-15. DOI: 10.1177/1687814017700058
[26] Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E. and Ijspeert, A. J., 2013, "Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments with Cheetah-Cub, a Compliant Quadruped Robot," International Journal of Robotics Research, 32(8), pp. 932–950. DOI: 10.1177/0278364913489205
[27] Ajallooeian, M., S. Gay, A. Tuleu, A. Spröwitz and A. J. Ijspeert, "Modular Control of Limit Cycle Locomotion over Unperceived Rough Terrain," 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 3390-3397, doi: 10.1109/IROS.2013.6696839.
[28] Spröwitz, Alexander T., Tuleu Alexandre, Ajallooeian Mostafa, Vespignani Massimo, Möckel Rico, Eckert Peter, D'Haene Michiel, Degrave Jonas, Nordmann Arne, Schrauwen Benjamin, Steil Jochen, Ijspeert Auke Jan, "Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs," FRONTIERS IN ROBOTICS AND AI. 2018; 5: 18. DOI: 10.3389/frobt.2018.00067
[29] Park, J., Kim, K. S. and Kim, S., 2014, "Design of a Cat-Inspired Robotic Leg for Fast Running," Advanced Robotics, 28(23), pp. 1587–1598. DOI: 10.1080/01691864.2014.968617
[30] Kamidi, V. R., Saab, W., and Ben-Tzvi, P., 2017, "Design and Analysis of a Novel Planar Robotic Leg for High-Speed Locomotion," 2017 IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, pp. 6343–6348. DOI: 10.1109/IROS.2017.8206540
[31] Geyer, H., Seyfarth, A. and Blickhan, R., 2005, "Spring-Mass Running: Simple Approximate Solution and Application to Gait Stability," Journal of Theoretical Biology, 32(3), pp. 315–328. DOI: 10.1016/j.jtbi.2004.08.015
[32] Luo, S., Bimbo, J., Dahiya, R., Liu, H., 2017, "Robotic Tactile Perception of Object Properties: A Review, " Mechatronics. 48, pp. 54-67. DOI: 10.1016/j.mechatronics.2017.11.002.
[33] Tiwana, M.I., Redmond, S.J., Lovell, N.H., 2012, "A Review of Tactile Sensing Technologies with Applications in Biomedical Engineering," Sens. Actuator A Phys. 179 (2012), pp. 17-31. DOI: 10.1016/j.sna.2012.02.051.
[34] Zou, L., Ge, C., Wang, Z.J., Cretu, E., Li, X., 2017, "Novel Tactile Sensor Technology and smart tactile sensing systems: A review," Sensors. 17, 2653. DOI: 10.3390/s17112653.
[35] Yousef, H., Boukallel, M., Althoefer, K., 2011, "Tactile Sensing for Dexterous in-hand Manipulation in Robotics—A review," Sens. Actuator A Phys. 167(2), pp.171-187. DOI: 10.1016/j.sna.2011.02.038.
[36] Kappassov, Z., Corrales, J.A., Perdereau, V., 2015, "Tactile Sensing in Dexterous Robot Hands — Review," Rob. Auton. Syst. 74(A), pp. 195-220. DOI: 10.1016/j.robot.2015.07.015.
[37] Xu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., Liu, R., 2018, "Recent Developments for Flexible Pressure Sensors: A Review," Micromachines. 9(11), 580. DOI: 10.3390/mi9110580.
[38] Chi, C., Sun, X., Xue, N., Li, T., Liu, C., 2018, "Recent Progress in Technologies for Tactile Sensors," Sensors. 18(4), 948. DOI: 10.3390/s18040948.
[39] Nguyen, K., Perdereau,V., 2013, "Fingertip Force Control Based on Max Torque Adjustment for Dexterous Manipulation of an Anthropomorphic Hand," Proc. IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 3557-3563. DOI: 10.1109/IROS.2013.6696863.
[40] Chuah, M.Y., Kim, S., 2014, "Enabling Force Sensing during Ground Locomotion: A Bio-inspired, Multi-axis, Composite Force Sensor Using Discrete Pressure Mapping," IEEE Sens. J. 14(5), pp. 1693-1703. DOI: 10.1109/JSEN.2014.2299805.
[41] Fishel, J. A., Santos, V. J. and Loeb, G. E., 2008, "A Robust Micro- vibration Sensor for Biomimetic Fingertips," 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, 2008, pp. 659-663. DOI: 10.1109/BIOROB.2008.4762917.
[42] Fishel, J.A., Loeb, G. E., 2012, "Bayesian exploration for intelligent identification of textures," Front. Neurorobot. 6(4). DOI: 10.3389/fnbot.2012.00004.
[43] Xu, D., Loeb, G. E., Fishel, J.A., 2013, "Tactile Identification of Objects Using Bayesian Exploration," Proc. IEEE International Conference on Robotics and Automation (ICRA) (2013), pp. 3056-3061. DOI: 10.1109/ICRA.2013.6631001.
[44] Schmitz, A., Maggiali, M., Natale, L., Bonino, B., Metta, G., 2010, "A Tactile Sensor for the Fingertips of the Humanoid Robot iCub," Proc. IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2212-2217. DOI: 10.1109/IROS.2010.5648838.
[45] Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G., 2011, "Methods and Technologies for the Implementation of Large-scale Robot Tactile Sensors," IEEE Trans. Robot. 27(3), pp. 389-400. DOI: 10.1109/TRO.2011.2132930.
[46] Martinez-Hernandez, U., Metta, G., Dodd, T.J., Prescott, T.J., Natale, L., Lepora, N.F., 2013, "Active Contour Following to Explore Object Shape with Robot Touch," World Haptics Conference (WHC), pp. 341-346. DOI: 10.1109/WHC.2013.6548432.
[47] Chuang, S-T., Chandra, M., Chen, R., Lo, C-Y, 2016, "Capacitive Tactile Sensor with Asymmetric Electrodes for Angle-detection-error Alleviation," Sens. Actuator A Phys. 250, pp. 159-169. DOI: 10.1016/j.sna.2016.09.022.
[48] Chung, Y., Chuang, S., Chen, T., Lo, C., Chen, R., 2016, "Capacitive Tactile Sensor for Angle Detection and its Accuracy Study," IEEE Sens. J. 16(18), pp. 6857-6865 DOI: 10.1109/JSEN.2016.2583544.
[49] Liu, H., Greco, J., Song, X., Bimbo, J., Seneviratne, L., Althoefer, K., "Tactile Image Based Contact Shape Recognition Using Neural Network," Proc. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 138-143. DOI: 10.1109/MFI.2012.6343036.
[50] Tenzer, Y., Jentoft, L. P., Howe, R. D., 2014, "The Feel of MEMS Barometers: Inexpensive and Easily Customized Tactile Array Sensors," IEEE Robot. Autom. Mag. 21(3), pp. 89-95. DOI: 10.1109/MRA.2014.2310152.
[51] Ward-Cherrier, B., Cramphorn, L., Lepora, N. F., 2017, "Exploiting Sensor Symmetry for Generalized Tactile Perception in Biomimetic Touch," IEEE Robot. Autom. Lett. 2(2), pp. 1218-1225. DOI: 10.1109/LRA.2017.2665692.
[52] Church,A., James, J. W., Cramphorn, L., Lepora, N. F., 2019, "Tactile Model O: Fabrication and Testing of a 3d-printed, Three-fingered Tactile Robot Hand." https://arxiv.org/abs/1907.07535
[53] Pestell, N., Cramphorn, L., Papadopoulos, F., Lepora, N. F., 2019, "A Sense of Touch for the Shadow Modular Grasper," IEEE Robot. Autom. Lett. 4(2), pp. 2220-2226. DOI: 10.1109/LRA.2019.2902434.
[54] Yuan, W., Dong, S., Adelson, E.H., 2017, "GelSight: high-resolution robot tactile sensors for estimating geometry and force," Sensors, 17, 2762. DOI: 10.3390/s17122762
[55] Wu, X. A., Huh, T. M., Sabin, A., Suresh, S. A., Cutkosky, M. R., "Tactile Sensing and Terrain-based Gait Control for Small Legged Robots," IEEE Trans. Robot. 36(1), pp. 15-27. DOI: 10.1109/TRO.2019.2935336.
[56] Chuah, M.Y., Kim, S., 2016, "Improved normal and shear tactile force sensor performance via Least Squares Artificial Neural Network (LSANN)," Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 116-122. DOI: 10.1109/ICRA.2016.7487123.
[57] Ramos, J., Katz, B., Chuah, M.Y.M., Kim, S., 2018, "Facilitating Model-based Control through Software-hardware Co-design," Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 566-572. DOI: 10.1109/ICRA.2018.8460575.
[58] Chuah, M. Y., Epstein, L., Kim, D., Romero, J., Kim, S., 2019, "Bi-Modal Hemispherical Sensor: a Unifying Solution for Three Axis Force and Contact Angle Measurement," IEEE International Conference on Intelligent Robots and Systems (IROS), pp.7968-7975. DOI: 10.1109/IROS40897.2019.8967878.
[59] Ades, C., Gonzalez, I., AlSaidi, M., Nojoumian, M., Bai, O., Aravelli, A., Lagos, L., Engeberg, E.D., 2018, "Robotic Finger Force Sensor Fabrication and Evaluation through a Glove," In: 31st Florida conference on recent advances in robotics, University of Central Florida.
[60] Abd, M.A., Gonzalez, I., Ades, C., Nojoumian, M., Engeberg, E.D., 2019, "Simulated Robotic Device Malfunctions Resembling Malicious Cyberattacks Impact Human Perception of Trust, Satisfaction, and Frustration," Int. J. Adv. Robot. Syst. 16(5). DOI: 10.1177/1729881419874962.
[61] Liang, C., Ceccarelli, M. and Takeda, Y., 2012, "Operation Analysis of a Chebyshev-Pantograph Leg Mechanism for a Single DOF Biped Robot," Frontiers of Mechanical Engineering, 7(4), pp. 357–370. DOI: 10.1007/s11465-012-0340-5
[62] Tavolieri, C., Ottaviano, E., Ceccarelli, M., and Nardelli, A., 2007, "A Design of a New Leg-Wheel Walking Robot," 2007 Mediterranean Conference on Control and Automation, Athens, Greece, pp. 1-6. DOI: 10.1109/MED.2007.4433829
[63] Birglen, L. and Ruella, C., 2014, "Analysis and Optimization of One-Degree of Freedom Robotic Legs," Journal of Mechanisms and Robotics, 6(4): 041004. DOI: 10.1115/1.4027234
[64] Beckerle, P., Stuhlenmiller, F., Rinderknecht, S., 2017, "Stiffness Control of Variable Serial Elastic Actuators: Energy Efficiency through Exploitation of Natural Dynamics," Actuators, 6, 28.
[65] Furnémont, R., Mathijssen, G., Verstraten, T., Lefeber, D. and Vanderborght, B., 2016, "Bi-directional Series-parallel Elastic Actuator and Overlap of the Actuation Layers," Bioinspiration & Biomimetics, 11, 016005.
[66] Grimmer, M., Eslamy, M., Gliech, S., and Seyfarth, A., 2012, "A Comparison of Parallel- and Series Elastic Elements in an Actuator for Mimicking Human Ankle Joint in Walking and Running," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, pp. 2463–70. DOI: 10.1109/ICRA.2012.6224967
[67] Liu, X., Rossi, A. and Poulakakis, I., 2018, "A Switchable Parallel Elastic Actuator and Its Application to Leg Design for Running Robots," IEEE/ASME Transactions on Mechatronics, 23(6), pp. 2681–2692. DOI: 10.1109/TMECH.2018.2871670
[68] Roozing, W., Li, Z., Medrano-Cerda, G. A., Caldwell, D. G. and Tsagarakis, N. G., 2016, "Development and Control of a Compliant Asymmetric Antagonistic Actuator for Energy Efficient Mobility," IEEE/ASME Transactions on Mechatronics, 21(2), pp. 1080–1091. DOI: 10.1109/TMECH.2015.2493359
[69] Roozing, W., Ren, Z., and Tsagarakis, N. G., 2018, "Design of a Novel 3-DoF Leg with Series and Parallel Compliant Actuation for Energy Efficient Articulated Robots, " 2018 IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, pp. 6068–6075. DOI: 10.1109/ICRA.2018.8460493
[70] Plooij, M., Wisse, M. and Vallery, H., 2016, "Reducing the Energy Consumption of Robots Using the Bidirectional Clutched Parallel Elastic Actuator," IEEE Transactions on Robotics, 32(6), pp. 1512–1523. DOI: 10.1109/TRO.2016.2604496
[71] Lin, S-Y., 2019, "Using Novel Tactile Sensor for A Dynamic Robot," Master thesis, Department of Engineering Science, National Cheng Kung University. DOI: 10.6844/ncku201902463
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw