進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202016400500
論文名稱(中文) 棲地異質性指數於魚類棲地偏好之應用
論文名稱(英文) Applying Habitat Heterogeneity Index in Fish Habitat Preference
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃御倫
研究生(英文) Yu-Lun Huang
學號 N86074039
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-孫建平
口試委員-邱郁文
口試委員-陳宣汶
中文關鍵字 適合度指數  水文地貌多樣性指數  成幼魚  棲地異質性  南台中華爬岩鰍 
英文關鍵字 Habitat Suitability Index  HMID  adult and juvenile fish  habitat heterogeneity  Southern Taiwan Chinese Stream Loach 
學科別分類
中文摘要 棲地異質性會影響食物供給、競爭或是掠食者造成的風險,而HMID是用來描述棲地異質性的工具,其是由水深和流速的變異係數合併成的一個指數。本研究在2020年2月到4月,藉由旗山溪的採樣結果繪製出各魚種在不同尺度下以及不同生活史下與HMID和HMID_S(將底質以均勻度的形式加入HMID)的適合度曲線。結果顯示在微棲地尺度下,大部分的魚種在不同生活史期間於不同異質性棲地生活。台灣間爬岩鰍整個族群生活在異質性較小的棲地,但其成魚相較幼魚生活在較高異質性的棲地;南台中華爬岩鰍整個族群生活在較大異質性的棲地,而其成魚相較幼魚生活在低異質性的棲地;南台吻鰕虎成幼魚皆生活在低異質性的棲地,但其成魚在較高異質性的棲地亦有較高的適合度指數,導致其適合度曲線呈現明顯的雙峰。由於加入底質參數的HMID_S造成大部分魚種的適合度曲線呈現明顯且分開的雙峰,因此將底質以均勻度形式加入HMID不適合。河段尺度下,結果顯示大部分魚種的成魚生活在高異質性河段,幼魚皆生活在較低異質性的河段,唯台灣間爬岩鰍幼魚生活在較高異質性河段。HMID用於微棲地尺度時,可以區分不同魚種在不同生活史的利用,未來在微棲地尺度下應是可以加入該指數探討魚類棲地選擇的一個參數;在河段尺度使用異質性指數時,大部分魚種皆喜好較高異質性的河段,未來在河川施工時,可以先使用該指數配合程式模擬瞭解該施工法對於河川異質性的影響。
英文摘要 This research was based on the sampling in Cishan Stream in 2020 to obtain HMID (Hydro-Morphological Index of Diversity, an index to describe habitat heterogeneity) and HMID_S (an index by adding substrate parameter to HMID) of fish habitat suitability index (HSI) under different scales and life histories. The result showed that at microhabitat scale most of fish spices live in different HMID habitat. Adult of Formosan River Loach (Hemimyzon formosanus) live in larger HMID habitat and juvenile one live in smaller HMID habitat; But considering both adult and juvenile Formosan River Loach, they live in smaller HMID habitat. Adult of Southern Taiwan Chinese Stream Loach (Sinogastromyzon nantaiensis) live in smaller HMID habitat and juvenile one live in larger HMID habitat. But considering both adult and juvenile Southern Taiwan Chinese Stream Loach, they live in larger HMID habitat. Both adult and juvenile Nantai Goby (Rhinogobius nantaiensis) all live in smaller HMID habitat but adult of Nantai Goby also have high suitability index in larger HMID habitat. By adding substrate in evenness form to HMID, the HSI of most fish species showed obvious bimodal curve, so it could not be suitable to add substrate in evenness form to HMID. At reach scale, most of adult fish occurred in high-heterogeneous reach. In contrast to adult fish, juvenile fish occurred in low-heterogeneous reach except juvenile of Formosan River Loach in high-heterogeneous. At microhabitat scale, each fish species lives in different HMID habitat. In future, this index can be used at the microhabitat scale. However, it is not easier to explain the fish behavior comparing to use simple parameters such as depth and velocity. At reach scale, most of fish species occur in high-heterogeneous reach. In the future, HMID can be used to simulate how the construction method influences river habitat heterogeneity.
論文目次 摘要 I
EXTENDED ABSTRACT II
誌謝 VII
目錄 IX
表目錄 XIV
圖目錄 XVII
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究方向及目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 層級式空間系統與棲地關係 3
2.2 水文地貌(HYDROMORPHOLOGY) 4
2.2.1 水文地貌參數調查 4
2.2.2 水文地貌評估方法 7
2.3 影響生物關鍵的環境參數 8
2.4 魚類偏好與適合度 9
2.5 異質性對生物的影響 11
2.5.1 微棲地尺度 11
2.5.2 河段尺度 11
第三章 研究方法 13
3.1 研究區域 13
3.2 調查方法 18
3.2.1 生物調查 19
3.2.2 非生物調查 21
3.3 統計方法 24
3.3.1 參數計算 24
3.3.2 水文地貌多樣性指數(Hydro-Morphological Index of Diversity, HMID) 26
3.3.3 適合度曲線 26
3.3.4 複回歸分析 28
3.3.5 變異數分析 29
3.3.6 主成份分析 33
第四章 結果與討論 34
4.1 採樣河段環境概述 34
4.2 魚類採樣結果 35
4.3 適合度曲線 38
4.3.1 微棲地尺度 39
4.3.2 河段尺度 49
4.4 影響生物的關鍵環境參數 53
4.4.1 微棲地尺度 54
4.4.2 河段尺度 55
4.5 台灣間爬岩鰍棲地與南台中華爬岩鰍棲地 56
4.5.1 南台中華爬岩鰍棲地喜好 57
4.5.2 台灣間爬岩鰍棲地喜好 60
第五章 結論與建議 61
5.1 結論 61
5.2 建議 62
第六章 參考文獻 63
附錄 70
附錄1. 電魚許可公文 70
附錄2. 採樣點坐標 73
附錄3. 採樣河段比較–民權大橋、錫安山與大武壠 75
附錄3.1 常態分布檢定 75
附錄3.2 同質性檢定 75
附錄3.3 整體檢定 76
附錄3.4 事後檢定 76
附錄3.5 描述性統計 78
附錄4. 台灣間爬岩鰍與南台中華爬岩鰍棲地差異 79
附錄4.1 南台中華爬岩鰍皆有出現的電格比較和只有台灣間爬岩鰍電格與台灣間爬岩鰍(錫安山與大武壠一起比較) 79
附錄4.1.1 常態分布檢定 79
附錄4.1.2 同質性檢定 79
附錄4.1.3 整體檢定 80
附錄4.2 南台中華爬岩鰍皆有出現的電格比較和只有台灣間爬岩鰍電格與台灣間爬岩鰍(僅錫安山電格) 81
附錄4.2.1 常態分布檢定 81
附錄4.2.2 同質性檢定 82
附錄4.2.3 整體檢定 82
附錄4.3 南台中華爬岩鰍皆有出現的電格比較和只有台灣間爬岩鰍電格與台灣間爬岩鰍(僅大武壠電格) 83
附錄4.3.1 常態分布檢定 83
附錄4.3.2 同質性檢定 84
附錄4.3.3 整體檢定 84
附錄5. 台灣間爬岩鰍分布範圍 85
附錄5.1 台灣間爬岩鰍豐度差異(錫安山與大武壠一起比較) 85
附錄5.1.1 常態分布檢定 85
附錄5.1.2 同質性檢定 85
附錄5.1.3 整體檢定 86
附錄5.2 台灣間爬岩鰍豐度差異(僅錫安山電格) 86
附錄5.2.1 常態分布檢定 86
附錄5.2.2 同質性檢定 86
附錄5.2.3 整體檢定 87
附錄5.3 台灣間爬岩鰍豐度差異(僅大武壠電格) 87
附錄5.3.1 常態分布檢定 87
附錄5.3.2 同質性檢定 88
附錄5.3.3 整體檢定 88
附錄6. 各類魚種微棲地因子偏好 89
附錄6.1 台灣間爬岩鰍 89
附錄6.1.1 全體 89
附錄6.1.2 成幼魚 90
附錄6.2 南台中華爬岩鰍 92
附錄6.2.1 全體 92
附錄6.2.2 成幼魚 93
附錄6.3 南台吻鰕虎 95
附錄6.3.1 全體 95
附錄6.3.2 成幼魚 96
附錄6.4 高身白甲魚 98
附錄6.4.1 全體 98
附錄6.4.2 成幼魚 99

參考文獻 Almany, G. R., Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos, 106(2), 275-284, (2004).
Andruskiw, M., Fryxell, J. M., Thompson, I. D., & Baker, J. A., Habitat‐mediated variation in predation risk by the American marten. Ecology, 89(8), 2273-2280, (2008).
Bain, M. B., Finn, J. T., & Booke, H. E., A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493, (1985).
Basquill, S. P., & Grant, J. W., An increase in habitat complexity reduces aggression and monopolization of food by zebra fish (Danio rerio). Canadian Journal of Zoology, 76(4), 770-772, (1998).
Benjankar, R., Koenig, F., & Tonina, D., Comparison of hydromorphological assessment methods: Application to the Boise River, USA. Journal of Hydrology, 492, 128-138, (2013).
Bovee, K. D., Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology (FWS/OBS-86/7). Retrieved from Washington, D.C.: http://pubs.er.usgs.gov/publication/70121265. (1986).
Bovee, K. D., Milhous, R. T., & Turow, J., Hydraulic simulation in instream flow studies: theory and techniques: Department of the Interior, Fish and Wildlife Service, Office of Biological …, (1978).
Brierley, G. J., & Fryirs, K. A., Geomorphology and river management: applications of the river styles framework: John Wiley & Sons, (2013).
Brown, M. B., & Forsythe, A. B., Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346), 364-367, (1974).
Church, M., Geomorphic thresholds in riverine landscapes. Freshwater Biology, 47(4), 541-557, (2002).
Conallin, J., Olsen, M., Boegh, E., Jensen, J. K., & Pedersen, S., Habitat suitability indices development in Denmark: are international indices applicable under small lowland stream conditions? Intl. J. River Basin Management, 8(2), 151-160, (2010).
Conover, W. J., Johnson, M. E., & Johnson, M. M., A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics, 23(4), 351-361, (1981).
Crane, A. L., Ferrari, M. C., Rivera-Hernández, I. A., & Brown, G. E., Microhabitat complexity influences fear acquisition in fathead minnows. Behavioral Ecology, 31(1), 261-266, (2020).
Cummins, K. W., & Lauff, G. H., The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia, 34(2), 145-181, (1969).
Dolinsek, I., Grant, J., & Biron, P., The effect of habitat heterogeneity on the population density of juvenile Atlantic salmon Salmo salar L. Journal of Fish Biology, 70(1), 206-214, (2007).
Dupuch, A., Magnan, P., Bertolo, A., Dill, L., & Proulx, M., Does predation risk influence habitat use by northern redbelly dace Phoxinus eos at different spatial scales? Journal of Fish Biology, 74(7), 1371-1382, (2009).
Freeman, M. C., Bowen, Z. H., & Crance, J. H., Transferability of habitat suitability criteria for fishes in warmwater streams. North American Journal of Fisheries Management, 17(1), 20-31, (1997).
Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D., A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management, 10(2), 199-214, (1986).
Garner, P., Suitability indices for juvenile 0+ roach [Rutilus rutilus (L.)] using point abundance sampling data. Regulated Rivers: Research & Management, 10(2‐4), 99-104, (1995).
Giller, P. S., Giller, P., & Malmqvist, B., The biology of streams and rivers: Oxford University Press, (1998).
Goodwin, R. A., Politano, M., Garvin, J. W., Nestler, J. M., Hay, D., Anderson, J. J., Weber, L. J., Dimperio, E., Smith, D. L., & Timko, M., Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the National Academy of Sciences, 111(14), 5277-5282, (2014).
Gostner, W., Alp, M., Schleiss, A. J., & Robinson, C. T., The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia, 712(1), 43-60, (2012).
Höjesjö, J., Johnsson, J., & Bohlin, T., Habitat complexity reduces the growth of aggressive and dominant brown trout (Salmo trutta) relative to subordinates. Behavioral Ecology and Sociobiology, 56(3), 286-289, (2004).
Haro, A., Odeh, M., Noreika, J., & Castro‐Santos, T., Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. Transactions of the American Fisheries Society, 127(1), 118-127, (1998).
Heithaus, M. R., & Dill, L. M., Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology, 83(2), 480-491, (2002).
Hewitt, J. E., Thrush, S. F., Halliday, J., & Duffy, C., The importance of small‐scale habitat structure for maintaining beta diversity. Ecology, 86(6), 1619-1626, (2005).
Januschke, K., Sundermann, A., Antons, C., Haase, P., Lorenz, A., Hering, D., & Aue, D., Untersuchung und Auswertung von ausgewählten Renaturierungsbeispielen repräsentativer Fließgewässertypen der Flusseinzugsgebiete Deutschlands.[Investigation and analysis of selected restoration case studies at representative river types in Germany.]. Deut. Rat Landespfl, 82, 23-39, (2009).
Jähnig, S. C., Brabec, K., Buffagni, A., Erba, S., Lorenz, A. W., Ofenböck, T., Verdonschot, P. F., & Hering, D., A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. Journal of Applied Ecology, 47(3), 671-680, (2010).
Jähnig, S. C., Brunzel, S., Gacek, S., Lorenz, A. W., & Hering, D., Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. Journal of Applied Ecology, 46(2), 406-416, (2009).
Jähnig, S. C., Lorenz, A., & Hering, D., Hydromorphological parameters indicating differences between single- and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(7), 1200-1216, (2008).
Kemp, P. S., Gessel, M. H., & Williams, J. G., Fine-scale behavioral responses of Pacific salmonid smolts as they encounter divergence and acceleration of flow. Transactions of the American Fisheries Society, 134(2), 390-398, (2005).
Koenig, F., Method for the Hydromorphological and Sociocultural Assessment of Urban Rivers. University of Karlsruhe, Karlsruhe, Germany, (2011).
Koster, W. J., Some phases of the life history and relationships of the cyprinid, Clinostomus elongatus (Kirtland). Copeia, 1939(4), 201-208, (1939).
Kovalenko, K. E., Thomaz, S. M., & Warfe, D. M., Habitat complexity: approaches and future directions. Hydrobiologia, 685(1), 1-17, (2012).
Lévêque, C., Biodiversity dynamics and conservation: the freshwater fish of tropical Africa: Cambridge University Press, (1997).
Larson, M. G., Booth, D. B., & Morley, S. A., Effectiveness of large woody debris in stream rehabilitation projects in urban basins. Ecological Engineering, 18(2), 211-226, (2001).
Lee, P.-Y., & Suen, J.-P., Comparing habitat suitability indices (HSIs) based on abundance and occurrence data. North American Journal of Fisheries Management, 33(1), 89-96, (2013).
Lepori, F., Palm, D., Brännäs, E., & Malmqvist, B., Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecological Applications, 15(6), 2060-2071, (2005).
Linduska, J., Bottom type as a factor influencing the local distribution of mayfly nymphs. The Canadian Entomologist, 74(2), 26-30, (1942).
Lorenz, A. W., Stoll, S., Sundermann, A., & Haase, P., Do adult and YOY fish benefit from river restoration measures? Ecological Engineering, 61, 174-181, (2013).
Massey, W., Biron, P. M., & Choné, G., Impacts of river bank stabilization using riprap on fish habitat in two contrasting environments. Earth Surface Processes and Landforms, 42(4), 635-646, (2017).
Matthews, W. J., & Marsh‐Matthews, E., Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biology, 48(7), 1232-1253, (2003).
Mattingly, H. T., & Galat, D. L., Distributional patterns of the threatened Niangua darter, Etheostoma nianguae, at three spatial scales, with implications for species conservation. Copeia, 2002(3), 573-585, (2002).
McKee, P. M., & Parker, B. J., The distribution, biology, and status of the fishes Campostoma anomalum, Clinostomus elongatus, Notropis photogenis (Cyprinidae), and Fundulus notatus (Cyprinodontidae) in Canada. Canadian Journal of Zoology, 60(6), 1347-1358, (1982).
Moerke, A. H., Gerard, K. J., Latimore, J. A., Hellenthal, R. A., & Lamberti, G. A., Restoration of an Indiana, USA, stream: bridging the gap between basic and applied lotic ecology. Journal of the North American Benthological Society, 23(3), 647-660, (2004).
Moyle, P. B., & Vondracek, B., Persistence and structure of the fish assemblage in a small California stream. Ecology, 66(1), 1-13, (1985).
Muhar, S., & Jungwirth, M., Habitat integrity of running waters—assessment criteria and their biological relevance. Hydrobiologia, 386(1-3), 195, (1998).
Negishi, J. N., & Richardson, J. S., Responses of organic matter and macroinvertebrates to placements of boulder clusters in a small stream of southwestern British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 60(3), 247-258, (2003).
Nestler, J., Goodwin, R., Smith, D., Anderson, J., & Li, S., Optimum fish passage and guidance designs are based in the hydrogeomorphology of natural rivers. River Research and Applications, 24(2), 148-168, (2008).
Nestler, J. M., Milhous, R. T., Payne, T. R., & Smith, D. L., History and review of the habitat suitability criteria curve in applied aquatic ecology. River Research and Applications, 35(8), 1155-1180, (2019).
Newson, M. D., & Large, A. R. G., ‘Natural’ rivers, ‘hydromorphological quality’ and river restoration: a challenging new agenda for applied fluvial geomorphology. Earth Surface Processes and Landforms, 31(13), 1606-1624, (2006).
Orpwood, J. E., Magurran, A. E., Armstrong, J. D., & Griffiths, S. W., Minnows and the selfish herd: effects of predation risk on shoaling behaviour are dependent on habitat complexity. Animal Behaviour, 76(1), 143-152, (2008).
Palmer, M. A., Menninger, H. L., & Bernhardt, E., River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology, 55, 205-222, (2010).
Platts, W., Megahan, W., & Minshall, G., Methods for evaluating stream, riparian, and biotic conditions. USDA-FS For. Serv. Gen. Tech. Rep. INT-138, (1983).
Poppe, M., Kail, J., Aroviita, J., Stelmaszczyk, M., Giełczewski, M., & Muhar, S., Assessing restoration effects on hydromorphology in European mid-sized rivers by key hydromorphological parameters. Hydrobiologia, 769(1), 21-40, (2015).
Poppe, M., Stelzhammer, M., Seebacher, M., S. Muhar, K., Januschke, A., Lorenz, B., Kupilas, & Hering, D., Field protocols and associated database. Report D4.1. of the FP7 project REFORM. Retrieved from http://www.reformrivers.eu/field-protocols-and-associated-database-paired-river-restoration-comparison. (2012).
Pretty, J., Harrison, S., Shepherd, D., Smith, C., Hildrew, A., & Hey, R., River rehabilitation and fish populations: assessing the benefit of instream structures. Journal of Applied Ecology, 40(2), 251-265, (2003).
Rabeni, C., & Minshall, G., Factors affecting microdistribution of stream benthic insects. Oikos, 33-43, (1977).
Raleigh, R. F., Zuckerman, L. D., & Nelson, P. C., Habitat suitability index models and instream flow suitability curves: brown trout: Western Energy and Land Use Team, Division of Biological Services, Research …, (1984).
Rosenfeld, J., Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Transactions of the American Fisheries Society, 132(5), 953-968, (2003).
Shi, X., Liu, J., You, X., Bao, K., & Meng, B., Shared effects of hydromorphological and physico-chemical factors on benthic macroinvertebrate integrity for substrate types. Ecological Indicators, 105, 406-414, (2019).
Statzner, B., Gore, J. A., & Resh, V. H., Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society, 7(4), 307-360, (1988).
Sundbaum, K., & Näslund, I., Effects of woody debris on the growth and behaviour of brown trout in experimental stream channels. Canadian Journal of Zoology, 76(1), 56-61, (1998).
Teresa, F. B., & Casatti, L., Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status. Neotropical Ichthyology, 11(2), 395-402, (2013).
Thomas, J. A., & Bovee, K. D., Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8(3), 285-294, (1993).
Vadas Jr, R. L., & Orth, D. J., Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Transactions of the American Fisheries Society, 130(2), 217-235, (2001).
van Zyll De Jong, M. C., Cowx, I. G., & Scruton, D. A., An evaluation of instream habitat restoration techniques on salmonid populations in a Newfoundland stream. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 13(6), 603-614, (1997).
Vaughan, I. P., Diamond, M., Gurnell, A. M., Hall, K. A., Jenkins, A., Milner, N. J., Naylor, L. A., Sear, D. A., Woodward, G., & Ormerod, S. J., Integrating ecology with hydromorphology: a priority for river science and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(1), 113-125, (2009).
Ward, A. J., Kent, M. I., & Webster, M. M., Social recognition and social attraction in group-living fishes. Frontiers in Ecology and Evolution, 8, 15, (2020).
Ward, J., The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 2-8, (1989).
Wasser, L. L., Gewässerstrukturkartierung in der Bundesrepublik Deutschland. Verfahren für kleine und mittelgroße Fließgewässer–Empfehlung. Essen, (2000).
Wetzel, R. G., Lake and river ecosystems. Limnology, (2002).
Wiens, J. A., Spatial scaling in ecology. Functional Ecology, 3(4), 385-397, (1989).
Wieser, W., Developmental and metabolic constraints of the scope for activity in young rainbow trout (Salmo gairdneri). Journal of Experimental Biology, 118(1), 133-142, (1985).
Wilson, S., Graham, N., & Polunin, N. V., Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 151(3), 1069-1076, (2007).
Wolter, C., & Arlinghaus, R., Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries, 13(1), 63-89, (2003).
Wyżga, B., Oglęcki, P., Radecki-Pawlik, A., Skalski, T., & Zawiejska, J., Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia, 696(1), 29-46, (2012).
Zimmerman, B. J. (2009)。Microhabitat use by the redside dace (Clinostomus elongatus) in Ohio。
方力行、蘇六裕、陳義雄、韓僑權和陳益惠. 高身鯝魚形態、分佈及生物學之研究. 39(1), 78-87, (1996).
行政院農業委員會林務局. 楠梓仙溪野生動物保護區溪流監測、保育講習會與生物復育示範計畫. (2018).
吳明隆. SPSS 操作與應用: 變異數分析實務: 五南圖書出版股份有限公司, (2007).
呂映昇 (2009)。物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。國立成功大學水利及海洋工程學系碩博士班碩士論文,台南市。 取自 https://hdl.handle.net/11296/7mbb26
李德旺、于錫亮. 埔里中華爬岩鰍棲地環境之需求. 特有生物研究, 7(2), 13-22, (2005).
李鎮宇 (2019)。基於功能特徵方法評估渠道化工程對魚類群落的影響。成功大學水利及海洋工程學系學位論文,台南市。 取自 https://hdl.handle.net/11296/6778j7
杜小倩 (2012)。魚類適合度曲線通用性之研究。國立成功大學水利及海洋工程學系碩博士班碩士論文,台南市。 取自 https://hdl.handle.net/11296/53h4yy
周文賢. 統計學: 智勝文化, (1997).
周銘泰、高瑞卿. 台灣淡水及河口魚圖鑑, (2011).
林朝欽、陸聲山. 生物多樣性指數—Shannon 公式探源. (2012).
邱宏彬 (2018)。河道特性與魚類棲地利用之研究。成功大學水利及海洋工程學系學位論文,台南市。 取自 https://hdl.handle.net/11296/7j4uw4
邵廣昭 臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2020- 6-16)
梁世雄. 淡水水域生物監測之採樣器材介紹及資料分析 與應用. (2005).
陳品翰 (2012)。以颱風前後魚類棲地關係探討關鍵環境因子。成功大學水利及海洋工程學系學位論文,台南市。 取自 https://hdl.handle.net/11296/5et7j9
陳景祥. R 軟體應用統計方法 (修訂版). 東華書局. 臺北體育學院, 臺北, (2010).
陳義雄、方力行. 台灣淡水及河口魚類誌. 國立海洋生物博物館籌備處, (1999).
曾晴賢. 呂映昇(2009)以Email方式詢問. (2009).
黃鼎翔 (2010)。探討魚類豐度與棲息地河段地文因子之關係。成功大學水利及海洋工程學系學位論文,台南市。 取自 https://hdl.handle.net/11296/a383wb
楊正雄、葉明峰、何東輯、李訓煌、何珮琳和曾晴賢 (2020)。河川原生魚種生活史研究成果與應用。2020動物行為與生態學研討會,澎湖,臺灣。
經濟部水利署第七河川局 水系介紹:高屏溪 https://www.wra07.gov.tw/12594/12595/12602/12605/70918/,
葉明峰. 探索湖山生物資源解說手冊-魚蝦蟹篇: 行政院農委會特有生物保育中心, (2012).
趙傳睿 (2011)。以微棲地偏好度及適合度結合 River2D 模擬枯水期魚類棲地。成功大學水利及海洋工程學系學位論文,台南市。 取自 https://hdl.handle.net/11296/49zqdw
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw