進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202015321800
論文名稱(中文) 吸附水對多孔隙瀝青混凝土溫度梯度影響之研究
論文名稱(英文) Effect of the moisture suction to thermal gradient of the porous asphalt concrete
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 卓恩弘
研究生(英文) En-Hong Zhuo
學號 N66074425
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-楊士賢
口試委員-林鎮洋
口試委員-林子平
口試委員-蔡耀賢
口試委員-陳仙州
中文關鍵字 熱島效應  透水性鋪面  多孔隙瀝青混凝土  氧化碴  熱性質  吸附水  水熱實驗 
英文關鍵字 urban heat island  permeable pavement  porous asphalt concrete  oxidated slag  thermal properties  moisture suction  thermal-hydro experiment 
學科別分類
中文摘要 在過去數十年中,全球溫度升高和極端氣候影響了人類的生活,在都市因人口稠密、大量的建築物和不透水路面引起了熱島效應。過去文獻研究不同路面類型對城市熱島效應之影響,使用透水性路面的好處包括減少噪音、管理雨水徑流、改善水質與減緩熱島效應。多孔瀝青混凝土(Porous Asphalt Concrete)是常用於透水性路面之表面材料,過去研究顯示PAC可以降低鋪面溫度,並進一步考量水分含量在鋪面中之影響,與對水的微蒸發過程和其對減少路面溫度之影響進行數值模擬。然而,很少研究著重在實驗上量化多孔瀝青混凝土中溫度和水分含量變化之耦合效應。
本研究主旨在研究微蒸發和熱性質對多孔瀝青混凝土溫度之影響。在這項研究中進行了實驗室的模擬實驗,實驗試體用了四種不同混合料,兩種不同比例的氧化碴摻入PAC(80%和50%)、天然粒料的PAC和天然粒料的密級配瀝青混凝土(DGAC)。使用鹵素燈模擬太陽光照射,並設計了全乾狀態和吸水飽和條件下之試體,以模擬PAC之不同濕度條件並測量PAC之溫度梯度、熱性質、蒸發率與計算熱通量。
結果顯示試體在無水條件下,PAC表面溫度比DGAC高,這是因為PAC熱傳導係數低不易將熱能傳遞至深層,使得熱量聚集在表面,但在降溫方面PAC卻比DGAC快,可以想像在晚上時PAC能快速降回環境溫度,使夜晚空氣溫度較為舒適,而在含水狀態下,PAC能吸附較多水分並利於蒸發冷卻,有效降低鋪面溫度,而其中PAC-80OS降溫表現為最佳,由於使用了氧化碴,它比一般天然粒料之熱傳導係數大所以在導熱過程較快,是能多加利用之材料。
英文摘要 The global temperature increase and extreme climate have significantly influenced human life in the past decade. This phenomenon is especially severe in the urban area since the heat island effect due to densely populated buildings and impermeable road pavements are more prominent. Numerous studies have been conducted in the past on the effect of pavement types concerning the urban heat island and one promising solution is using the permeable pavement. The benefit of using permeable pavement includes reducing noise, managing rainwater runoff volume, improving water quality, and reducing the impact of heat islands effect. Porous asphalt concrete (PAC) is a commonly used surface material for permeable pavement. Studies in the past have shown that PAC can cool the pavement temperature as a result of increased air voids. Some studies further incorporated moisture content in the previous concrete and numerically model the micro evaporation process of water and its effect to alleviate the pavement temperature. However, few studies that focused on experimentally quantifying the coupling effect of temperature and moisture content variation in the porous asphalt concrete.
This study was aimed to investigate the effect of the micro-evaporation and thermal properties to the temperature of porous asphalt concrete. A laboratory-simulated thermal-hydro experiment was performed in this study with four types samples were used different mixtures, two different proportions of oxidated slag incorporated PAC (80% and 50% slag), PAC with natural aggregate, and dense grade asphalt concrete with natural aggregate. Solar energy was simulated using infrared light and scenarios including 0% moisture and suction-water saturate conditions were designed to simulate different moisture conditions of PAC and time-series thermal and moisture properties of PAC were measured. The water evaporation rate, heat flux, the gradient of temperature in the PAC slab were measured.
The results show that the surface temperature of PAC is higher than DGAC in dry conditions. This is because the low thermal conductivity of PAC is difficult to transfer heat energy to the deep layer, causing heat to accumulate on the surface. But PAC is cool down faster than DGAC , which can be imagined at night PAC can quickly cooling to the ambient temperature and making the night air temperature more comfortable, while in a wet conditions, PAC can absorb more water and facilitate evaporative cooling, effectively reducing the pavement temperature, moreover PAC-80OS has the best cooling performance, cause using the oxidated slag, which has a larger thermal conductivity than general natural aggregates, so the heat conduction process is faster, and this material can be used in PAC pavement.
論文目次 摘要 I
ABSTRACT II
誌謝 X
總目錄 XI
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究方法與架構 2
第二章 文獻回顧 5
2.1都市熱島效應 5
2.2鋪面對熱島效應之影響 6
2.3多孔性瀝青混凝土 7
2.4爐石基本介紹 10
2.4.1來源與製程 10
2.4.2物理性質 11
2.4.3化學性質 11
2.5熱傳理論 11
2.6熱傳導係數量測方法 16
2.7蒸發過程原理 18
第三章 研究方法 20
3.1研究流程 20
3.2試驗材料 22
3.2.1粒料與膠泥性質 22
3.2.2多孔隙瀝青混凝土配比 25
3.3試驗方法 28
3.3.1透水性質 28
3.3.2熱學性質 31
3.4室內環境模擬 32
3.4.1製作板試體 33
3.4.2現地透水試驗 34
3.4.3溫度量測規劃與設備 36
3.4.4架設模擬環境 38
3.4.5量測溫度、蒸發量 39
3.5鋪面熱輸出計算與分析 40
第四章 實驗結果與討論 42
4.1標準圓柱試體試驗結果 42
4.1.1滲透係數 42
4.1.2熱傳導係數量測 45
4.2板試體實驗量測結果分析 47
4.2.1現地透水試驗 47
4.2.2乾燥試體溫度變化 49
4.2.3濕潤試體溫度變化 52
4.2.4蒸發率量測結果 55
4.2.5持續加熱最高溫度 57
4.3熱輸出量計算 58
4.4討論 66
第五章 結論與建議 67
5.1結論 67
5.2後續研究方向與建議 68
參考文獻 69
參考文獻 英文文獻
[1]A.V. Novo, E. Gomez-Ullate, J.R. Bayon, D. Castro-Fresno, J. Rodriguez-Hernandez. (2010). Monitoring and Evaluation of Thermal Behaviour of Permeable Pavements Under the Northern Spain Climate. 7th International Conference on Sustainable Techniques and Strategies for Urban Water Management.
[2]Berg R, Quinn W. Use of light colored surface to reduce seasonal thaw penetration beneath embankments on permafrost. In: Proceedings of the second international symposium on cold regions engineering. University of Alaska, (1978). p. 86–99.
[3]Doulos, L., Santamouris, M., Livada, I., (2004). Passive cooling of outdoor urban
spaces: the role of materials. Sol. Energy 77 (2), 231-249.
[4]Hassn, A., Chiarelli, A., Dawson, A., & Garcia, A. (2016). Thermal properties of asphalt pavements under dry and wet conditions. Materials and Design, 91, pp. 432-439.
[5]I.J. Huddleston, H. Zhou, R.G. Hicks .(1991). Performance evaluation of open-graded Asphalt concrete mixtures used in Oregon. J. Assoc. Asphalt Paving Technol., 60 , pp. 19-42.
[6]Iwata, H., Watanabe, T., and Saito, T. (2002). Study on the Performance of Porous Asphalt Pavement on Winter Road Surface Conditions. Proceedings of the Xlth PIARC International Winter Road Congress 2002, Sapporo, Japan.
[7]K. Rahn, M. Hein, M. Dougherty, J. Gandy. (2015). The contribution of pavements to urban heat islands. 51 st ASC Annual International Conference Proceedings,Alabama : Associated Schools of Construction Auburn University.
[8]Li, H. (2012). Evaluation of cool pavement strategies for heat island mitigation.
[9]Li, H., Harvey, J., & Jones, D. (2013). Cooling effect of permeable asphalt pavement under dry and wet conditions. Transportation Research Record, 3(2372), pp. 97-107. doi:http://dx.doi.org/10.3141/2372-11
[10]Li, H., Harvey, J., Ge, Z. (2014). Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Construction and Building Materials, 65, pp. 367-375.
[11]Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522-538. doi:http://dx.doi.org/10.1016/j.jenvman.2017.03.095
[12]Pomerantz, M., Akbari, H., Chang, S.-C., Levinson, R., Pon, B., (2003). Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals. Lawrence Berkeley National Laboratory, Claifornia.
[13]Pourshams-Manzouri, T. (2013). Pavement temperature effects on overall urban heat island. Retrieved from https://www.proquest.com/docview/1494330603?accountid=12719
[14]Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, pp.389-399. doi:http://dx.doi.org/10.1016/j.enbuild.2014.09.076
[15]Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island-A review of the actual developments. Renewable & Sustainable Energy Reviews, 26, pp. 224-240. doi:http://dx.doi.org/10.1016/j.rser.2013.05.047
[16]Stempihar, J. J., Pourshams-Manzouri, T., Kaloush, K. E., & Rodezno, M. C. (2012). Porous asphalt pavement temperature effects for urban heat island analysis. Transportation Research Record. 1(2293), 123-130. doi:http://dx.doi.org/10.3141/2293-15
[17]Yang, J., Wang, Z.-H., Kaloush, K.E., 2015. Environmental impacts of reflective materials: is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sust. Energy Rev. 47 (0), 830-843.

中文文獻
[1]危時秀(2003),普通混凝土熱傳導性質之研究,碩士論文,中原大學土木工程研究所。
[2]行政院公共工程委員會(2013),多孔隙瀝青混凝土鋪面施工綱要規範,行政院。
[3]邱英浩、汪至佳、江志成(2014),植栽級透水鋪面對街道表面溫度之模擬,台灣建築學會,第88期,第61~78頁。
[4]徐敏晃、涂哲維(2016),電弧爐煉鋼爐碴在利用與管理新訊,中國土木水利學會,第43卷,第4期,第12~16頁。
[5]財團法人台灣營建研究院(2017),電弧爐煉鋼氧化碴瀝青混凝土鋪面試行使用手冊。
[6]張堡清(2014),透水性鋪面保水與溫差成效之評估-以中壢市龍慈路為例,碩士論文,國立中央大學土木工程研究所。
[7]陸象豫(2016),都市熱島效應,林業研究專訊,第23卷,第2期。
[8]楊志祥(2006),電弧爐氧化碴資源化於透水性混凝土地磚之可行性研究碩士論文,朝陽科技大學環境工程與管理研究所。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw