進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202012232200
論文名稱(中文) 毫/微米流道疊置雙層熱沉內分流水/氧化鋁奈米流體之強制對流熱散逸效能實驗研究
論文名稱(英文) Experimental study on forced convection heat dissipation efficacy of concurrent flow of water/Al2O3 nanofluid through a mini- and micro-channel stacked double-layer heat sink
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 彭建凱
研究生(英文) Jian-Kai Peng
學號 N16071134
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-何清政
口試委員-楊天祥
口試委員-溫昌達
口試委員-謝曉星
口試委員-吳志陽
中文關鍵字 奈米流體  疊置雙層熱沉  等熱通量加熱 
英文關鍵字 Nanofluid  stacked double-layer heat sink  constant heat flux heating 
學科別分類
中文摘要 本研究以實驗量測的方式,探討使用純水或氧化鋁-水奈米流體在不同的流量比下流經一毫/微米流道疊置雙層熱沉與單層微米流道熱沉時強制對流之熱傳增益與壓降降幅。毫/微米流道疊置雙層熱沉是以在單層微米流道熱沉上疊置一毫米流道熱沉所組成。微米流道熱沉與毫米流道熱沉皆以無氧銅加工成形,在固定總寬度(14.4mm)的情況下,其微米流道熱沉具有24條長度50mm、寬度0.3mm、高度0.9mm的矩形流道,換算成水力直徑為0.45mm;毫米流道熱沉具有12條長度50mm、寬度0.8mm、高度2.4mm的矩形流道,換算水力直徑為1.2mm。實驗條件為固定總流量346.0、692.0和1038.0,是由單層微米流道熱沉之流道尺寸及入口溫度定義之純水物性在雷諾數500、1000和1500所得,並將總流量以不同比例通過毫/微米流道疊置雙層熱沉,其流量比為0.5、1.0、1.33、1.5、2.0、2.5、3.0、3.56;入口溫度設定為30度C;流體帶走總熱量為265W,由於加熱面面積為72cm2,因此加熱通量為38.6W/cm2。由實驗結果可以得知,毫/微米流道疊置雙層熱沉確實能夠大幅降低壓降,與單層微流道熱沉相比最大下降了93.49%;在熱傳增益方面,使用純水/0.5%之奈米流體有最大增益值76.47%,另外,本實驗也發現 之奈米流體具有較高的熱容以及熱擴散係數,這將導致壁溫無法壓抑,此原因也會在本文討論之。
英文摘要 In this study, the method of experimental measurement is used to explore the force convection heat transfer gain and pressure drop of using pure water or alumina-water nanofluid to through a mini- and micro-channel stacked double-layer heat sink and a single-layer micro-channel heat sink at different flow ratio. The mini- and micro-channel stacked double-layer heat sink is composed of a single-layer micro-channel heat sink stacked with a millimeter-channel heat sink. Both the micro-channel heat sink and the millimeter-channel heat sink are formed by oxygen-free copper. With a fixed total width (14.4mm), the micro-channel heat sink has 24 rectangular channels with a length of 50mm, a width of 0.3mm, and a height of 0.9mm, and the converted hydraulic diameter is 0.45mm. The mini-channel heat sink has 12 rectangular channels with a length of 50mm, a width of 0.8mm, and a height of 2.4mm, and the converted hydraulic diameter is 1.2mm. The experimental conditions are fixed total flow. The fixed total flow is 346.0, 692.0 and 1038.0, which is defined by pure water physics property and micro-channel size at Reynolds numbers 500, 1000 and 1500. The total flow is passed through the mini- and micro-channel stacked double-layer heat sink in different proportions. The flow ratio is 0.5, 1.0, 1.33, 1.5, 2.0, 2.5,3.56. The inlet temperature is fixed at 30. The total heat taken away by the fluid is 265W, which is converted into a heat flux of 36.8 . From the experimental results, it can be known that the mini- and micro-channel stacked double-layer heat sink can indeed greatly reduce the pressure drop, which is 93.49% lower than that of the single-layer micro-channel heat sink. In terms of heat transfer gain, the use of pure water/ nanofluid has a maximum gain of 76.47%. In addition, this experiment also found that the nanofluid has a higher heat capacity and thermal diffusivity, which will cause the wall temperature to unable be suppressed. This reason will also be discussed in this article.
論文目次 摘要 I
英文摘要 II
致謝 XII
目錄 XIII
圖目錄 XVII
表目錄 XXII
符號說明 XXIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 7
1-4 論文架構 7
第二章 物理模型 9
2-1 物理模型 9
2-1-1 毫/微米流道疊置雙層熱沉 9
2-1-2 單層微流道熱沉 9
第三章 實驗方法與數據處理 13
3-1 實驗模型 13
3-1-1 毫/微米流道疊置雙層熱沉 13
3-1-2 單層微流道熱沉 16
3-2 實驗設備 21
3-3 實驗迴路 21
3-4 實驗步驟 24
3-4 奈米流體的調配及熱物性質量測 25
3-4-1 奈米流體的調配 25
3-4-2 奈米流體熱物性質量測 26
3-5 數據處理 35
3-5-1 毫/微米流道疊置雙層熱沉 35
3-5-2 單層微米流道熱沉 41
3-5-3 毫/微米流道疊置雙層熱沉與單層微米流道熱沉比較之參數定義 47
3-6 誤差分析 49
第四章 單層微米流道熱沉之熱散逸性能 52
4-1 無因次壁溫 52
4-2 摩擦因子與壓降 53
4-3 入口溫度定義之平均熱對流係數 54
4-4 熱阻 54
4-5平均局部紐森數 55
4-6 加熱面均勻度指標 55
4-7 鰭片效率 56
第五章 毫/微米流道疊置雙層熱沉之熱散逸性能 64
5-1 無因次壁溫 64
5-2 摩擦因子與壓降 66
5-3 入口溫度定義之平均熱對流係數 67
5-4 熱阻 68
5-5 加熱面均勻度指標 69
5-6 毫米流道流體載熱占總載熱之比值 70
第六章 毫/微米流道疊置雙層熱沉與單層微米流道熱沉熱散逸性能比較 91
6-1 無因次壁溫壓抑 91
6-2 壓降降幅 92
6-3 入口溫度定義之平均熱對流係數 93
6-4 熱阻 93
6-5 加熱面均勻度指標 94
6-6 效能指標 94
第七章 結論與未來研究展望 105
7-1 結論 105
7-1-1 單層微米流道熱沉 105
7-1-2 毫/微米流道疊置雙層熱沉 105
7-1-3 毫微米流道疊置雙層熱沉與單層微米流道熱沉之比較 106
7-2 未來研究與展望 107
參考文獻 108
參考文獻 [1] D. B. Tuckerman and R. F. W. Pease, "HIGH-PERFORMANCE HEAT SINKING FOR VLSI," Electron Device Letters, vol. 2, no. 5, pp. 126-129, 1981.
[2] Y. J. Cheng, "Numerical simulation of stacked microchannel heat sink with mixing-enhanced passive structure," International Communications in Heat and Mass Transfer, vol. 34, no. 3, pp. 295-303, 2007.
[3] S. Deldar and M. Khoshvaght-Aliabadi, "Evaluation of water-cooled heat sink with complex designs of groove for application in fusion energy management," Fusion Engineering and Design, vol. 140, pp. 107-116, 2019.
[4] V. Leela Vinodhan and K. S. Rajan, "Computational analysis of new microchannel heat sink configurations," Energy Conversion and Management, vol. 86, pp. 595-604, 2014.
[5] V. Leela Vinodhan and K. S. Rajan, "Fine-tuning width and aspect ratio of an improved microchannel heat sink for energy-efficient thermal management," Energy Conversion and Management, vol. 105, pp. 986-994, 2015.
[6] C. J. Ho, L. C. Wei, and Z. W. Li, "An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid," Applied Thermal Engineering, vol. 30, no. 2-3, pp. 96-103, 2010.
[7] G. M. Moldoveanu, G. Huminic, A. A. Minea, and A. Huminic, "Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid," International Journal of Heat and Mass Transfer, vol. 127, pp. 450-457, 2018.
[8] J. Wu, J. Zhao, J. Lei, and B. Liu, "Effectiveness of nanofluid on improving the performance of microchannel heat sink," Applied Thermal Engineering, vol. 101, pp. 402-412, 2016.
[9] L. Chuan, X.-D. Wang, T.-H. Wang, and W.-M. Yan, "Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept," International Communications in Heat and Mass Transfer, vol. 65, pp. 52-57, 2015.
[10] K. Vafai and L. Zhu, "Analysis of two-layered micro-channel heat sink concept in electronic cooling," International Journal of Heat and Mass Transfer, vol. 42, no. 12, pp. 2287-2297, Jun 1999.
[11] X. J. Wei, Y. Joshi, and M. K. Patterson, "Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices," Journal of Heat Transfer-Transactions of the Asme, vol. 129, no. 10, pp. 1432-1444, Oct 2007.
[12] T. C. Hung, W. M. Yan, and W. P. Li, "Analysis of heat transfer characteristics of double-layered microchannel heat sink," (in English), International Journal of Heat and Mass Transfer, Article vol. 55, no. 11-12, pp. 3090-3099, May 2012.
[13] G. N. Xie, Y. Q. Liu, B. Sunden, and W. H. Zhang, "Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling," (in English), J. Therm. Sci. Eng. Appl., Article vol. 5, no. 1, p. 9, Mar 2013, Art no. 011004.
[14] J. M. Wu, J. Y. Zhao, and K. J. Tseng, "Parametric study on the performance of double-layered microchannels heat sink," Energy Conversion and Management, vol. 80, pp. 550-560, 2014.
[15] Y. Zhai, Z. Li, H. Wang, and J. Xu, "Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks," Energy Conversion and Management, vol. 143, pp. 431-439, 2017.
[16] B. Osanloo, A. Mohammadi-Ahmar, A. Solati, and M. Baghani, "Performance enhancement of the double-layered micro-channel heat sink by use of tapered channels," Applied Thermal Engineering, vol. 102, pp. 1345-1354, 2016.
[17] Y. Zhai, G. Xia, Z. Li, and H. Wang, "A novel flow arrangement of staggered flow in double-layered microchannel heat sinks for microelectronic cooling," International Communications in Heat and Mass Transfer, vol. 79, pp. 98-104, 2016.
[18] S.-L. Wang, X.-Y. Li, X.-D. Wang, and G. Lu, "Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins," International Communications in Heat and Mass Transfer, vol. 93, pp. 41-47, 2018.
[19] A. Ghahremannezhad, H. Xu, M. Alhuyi Nazari, M. Hossein Ahmadi, and K. Vafai, "Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks," International Journal of Heat and Mass Transfer, vol. 131, pp. 52-63, 2019.
[20] T.-C. Hung and W.-M. Yan, "Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids," International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 3225-3238, 2012.
[21] H. E. Ahmed, M. I. Ahmed, I. M. F. Seder, and B. H. Salman, "Experimental investigation for sequential triangular double-layered microchannel heat sink with nanofluids," International Communications in Heat and Mass Transfer, vol. 77, pp. 104-115, 2016.
[22] W. Qu and I. Mudawar, "," International Journal of Heat and Mass Transfer, vol. 45, pp. 2549-2565, 2001.
[23] C. O. Popiel and J. Wojtkowiak, "Simple Formulas for Thermophysical Properties of Liquid Water for Heat Transfer Calculations (from 0°C to 150°C)," Heat Transfer Engineering, vol. 19, no. 3, pp. 87-101, 1998.
[24] S. Shen, J. L. Xu, J. J. Zhou, and Y. Chen, "Flow and heat transfer in microchannels with rough wall surface," Energy Conversion and Management, vol. 47, no. 11-12, pp. 1311-1325, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw