進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202011010800
論文名稱(中文) 大型臥式搪銑床之面盤幾何誤差量測與驗證
論文名稱(英文) Measurement and Verification of Geometric Errors in Facing Head on Large Horizontal Boring and Milling Machines
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 劉唐兆
研究生(英文) Tang-Chao Liu
學號 N16071338
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-劉建聖
口試委員-林昌進
口試委員-鍾俊輝
口試委員-蔡忠佑
中文關鍵字 機上量測  觸發式測頭  旋轉軸  幾何誤差  誤差補償 
英文關鍵字 On-machine measurement  Touch-trigger probe  Rotary axis  Geometric error  Error compensation 
學科別分類
中文摘要 本論文提出一套利用觸發式測頭與標準校正球的量測系統,能夠量測旋轉軸位置的幾何誤差,此量測系統除了安裝操作方便、成本較低,還可應用在不同構型的工具機上,做為快速檢測旋轉軸位置誤差的機上量測系統。本論文以遠東機械臥式搪銑床BMC-110FT2做為研究對象,所量測的目標為其面盤旋轉軸線的4項幾何誤差,解決此機器因為面盤與主軸之間的位置誤差,造成搪孔加工的工件呈現內外圓不同心的問題。
透過建立臥式搪銑床的幾何誤差模型,推導量測時的正逆向運動學,分析此機器的面盤在不同角度下,理想與實際標準校正球之間的位置差異,並由建立的誤差計算方程式,解出面盤旋轉軸線影響最大的4項位置誤差。在最後將測得的誤差補償於控制器後,透過切削測試直接驗證了此量測系統的可行性與可靠性。由結果顯示,搪孔加工的工件其內外圓同心度的偏差在補償後有顯著的下降,減少了原本同心度偏差量的86.6%,為廠商提供了一套有效檢測面盤位置誤差的方法,並預期此量測系統能應用於更多情境,做為一快速檢測旋轉軸幾何誤差的機上量測系統。
英文摘要 This thesis proposes an on-machine measurement methodology for identification and compensation of location errors of rotary axis on machine tools by using a touch-trigger probe and a precise sphere. The advantages of this measuring system are not only convenient for installation and operation, but also can be applied to different configurations of machine tools. This thesis takes the horizontal boring and milling machine BMC-110FT2 produced by Far East Machinery as the research vehicle. The aim of this thesis is to measure the location errors between the facing head and the spindle of this machine. These location errors lead to the problem that the inner and outer holes are not concentric in the boring workpiece.
By establishing the geometric error model and analyzing the difference between the ideal and real center positions of the precise sphere when the facing head of this machine is at different angles, the four location errors of the rotary axis of the facing head are calculated. At the end of the experiment, the measured location errors are compensated to the controller. The results show that the deviation of the inner and outer hole concentricity of the boring workpiece is significantly reduced to 0.024 mm from 0.179 mm after compensation. It is expected that this method can be applied to more situations as an on-machine measurement solution for quickly analyzing the geometric errors of rotary axis on machine tools.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 3
1-3論文架構 6
第二章 文獻回顧 7
2-1五軸工具機構型 7
2-2工具機之誤差源 8
2-3幾何誤差定義 12
2-4誤差量測文獻回顧 18
2-5齊次座標轉換矩陣 22
第三章 系統架構與量測原理 28
3-1實驗機台介紹 28
3-2量測儀器介紹 30
3-3量測系統架設與評估 33
3-3-1測頭安裝於面盤 34
3-3-2測頭安裝於工作檯 38
3-3-3小結 43
3-4量測目標及量測原理 44
第四章 幾何誤差模型建立 47
4-1臥式搪銑床幾何誤差模型建立 47
4-2正向運動學推導 52
4-3逆向運動學推導 57
第五章 量測方法與誤差計算結果 61
5-1量測方法與流程 61
5-2方法一,以代數與誤差方程式求解誤差 69
5-2-1方法一數學推導 69
5-2-2方法一誤差計算結果 73
5-3方法二,以空間幾何概念求解誤差 76
5-3-1方法二數學推導 76
5-3-2方法二誤差計算結果 83
5-4小結 85
第六章 誤差補償與驗證 87
6-1誤差補償與驗證方法 87
6-2切削測試與驗證結果 91
第七章 結論與未來規劃 96
7-1結論 96
7-2未來規劃 96
參考文獻 99
參考文獻 [1] S. T. Xiang, J. G. Yang, K. G. Fan, and H. X. Lu, “Multi-machine tools volumetric error generalized modeling and Ethernet-based compensation technique,” Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., vol. 230, no. 5, pp. 870-882, 2016.
[2] Y. X. Guo et al., “Continuous measurements with single setup for position-dependent geometric errors of rotary axes on five-axis machine tools by a laser displacement sensor,” Int. J. Adv. Manuf. Technol., vol. 99, no. 5-8, pp. 1589-1602, 2018.
[3] Z. X. Jiang, S. Bao, X. D. Zhou, X. Q. Tang, and S. Q. Zheng, “Identification of location errors by a touch-trigger probe on five-axis machine tools with a tilting head,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1-4, pp. 149-158, 2015.
[4] S. Sakamoto, “Analysis of generating motion for five-axis machining centers,” Transactions of NAMRI/SME, p. 287, 1993.
[5] F. C. Chen, “On the structural configuration synthesis and geometry of machining centres,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., vol. 215, no. 6, pp. 641-652, 2001.
[6] R. Ramesh, M. A. Mannan, and A. N. Poo, “Error compensation in machine tools - a review Part I: geometric, cutting-force induced and fixture-dependent errors,” Int. J. Mach. Tools Manuf., vol. 40, no. 9, pp. 1235-1256, 2000.
[7] 廖明毅, “以DBB量測及校正五軸工具機之幾何誤差,” 國立清華大學動力機械工程學系, 碩士論文, 2002
[8] X. Jiang, “Characterising geometric errors in rotary axes of 5-axis machine tools,” 2015.
[9] P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, and W. Pril, “Design for Precision: Current Status and Trends,” CIRP Annals, vol. 47, no. 2, pp. 557-586, 1998.
[10] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines-An update,” CIRP Ann-Manuf. Technol., vol. 57, no. 2, pp. 660-675, 2008.
[11] P. H. Pereira and R. J. Hocken, “Characterization and compensation of dynamic errors of a scanning coordinate measuring machine,” Precision Engineering, vol. 31, no. 1, pp. 22-32, 2007.
[12] L. Andolfatto, S. Lavernhe, and J. R. R. Mayer, “Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool,” Int. J. Mach. Tools Manuf., vol. 51, no. 10-11, pp. 787-796, 2011.
[13] T. L. Schmitz, J. C. Ziegert, J. S. Canning, and R. Zapata, “Case study: A comparison of error sources in high-speed milling,” Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., vol. 32, no. 2, pp. 126-133, 2008.
[14] Y. Altintas, C. Brecher, M. Weck, and S. Witt, “Virtual Machine Tool,” CIRP Annals, vol. 54, no. 2, pp. 115-138, 2005.
[15] Y. Altintas and S. Tulsyan, “Prediction of part machining cycle times via virtual CNC,” CIRP Annals, vol. 64, no. 1, pp. 361-364, 2015.
[16] V. S. B. Kiridena and P. M. Ferreira, “Kinematic modeling of quasistatic errors of three-axis machining centers,” International Journal of Machine Tools and Manufacture, vol. 34, no. 1, pp. 85-100, 1994.
[17] 楊建國, “數控機床誤差綜合補償技術及應用,” 1998
[18] 倪軍, “數控機床誤差補償研究的回顧及展望,” 中國機械工程, no. 01, pp. 29-33+122, 1997.
[19] S. W. Zhu, G. F. Ding, S. F. Qin, J. Lei, L. Zhuang, and K. Y. Yan, “Integrated geometric error modeling, identification and compensation of CNC machine tools,” Int. J. Mach. Tools Manuf., vol. 52, no. 1, pp. 24-29, 2012.
[20] S. Aguado, D. Samper, J. Santolaria, and J. J. Aguilar, “Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements,” International Journal of Machine Tools and Manufacture, vol. 53, no. 1, pp. 160-169, 2012.
[21] J.-x. Chen, S.-w. Lin, and B.-w. He, “Geometric error measurement and identification for rotary table of multi-axis machine tool using double ballbar,” International Journal of Machine Tools and Manufacture, vol. 77, pp. 47-55, 2014.
[22] J. Mayr et al., “Thermal issues in machine tools,” CIRP Ann-Manuf. Technol., vol. 61, no. 2, pp. 771-791, 2012.
[23] M. Wiessner, P. Blaser, S. Böhl, J. Mayr, W. Knapp, and K. Wegener, “Thermal test piece for 5-axis machine tools,” Precision Engineering, vol. 52, pp. 407-417, 2018.
[24] H. Liu, E. Miao, X. Zhuang, and X. Wei, “Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm,” Precision Engineering, vol. 51, pp. 169-175, 2018.
[25] H. Liu, E. M. Miao, X. Y. Wei, and X. D. Zhuang, “Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm,” International Journal of Machine Tools and Manufacture, vol. 113, pp. 35-48, 2017.
[26] S. H. Hsieh, Y. C. Shih, W.-H. Hsieh, F. Y. Lin, and M. J. Tsai, “Calculation of temperature distributions in the rotors of oil-injected screw compressors,” International Journal of Thermal Sciences, vol. 50, no. 7, pp. 1271-1284, 2011.
[27] S. Hsieh, Y. Shih, W. H. Hsieh, F. y. Lin, and M. Tsai, “Performance analysis of screw compressors - Numerical simulation and experimental verification,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 226, pp. 968-980, 2012.
[28] H. Shen, J. Fu, Y. He, and X. Yao, “On-line Asynchronous Compensation Methods for static/quasi-static error implemented on CNC machine tools,” International Journal of Machine Tools and Manufacture, vol. 60, pp. 14-26, 2012.
[29] 盛伯浩, “數控機床誤差的綜合動態補償,” 世界制造技術與裝備市場, no. 02, pp. 56-61, 1995.
[30] 沈建均, “五軸工具機之幾何誤差鑑別與體積誤差建模,” 國立虎尾科技大學機械設計工程系, 碩士論文, 2018
[31] ISO230-1:2012, Test code for machine tools - Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions, 2012.
[32] ISO230-7:2015, Test code for machine tools - Part 7: Geometric accuracy of axes of rotation, 2015.
[33] K.-I. Lee and S.-H. Yang, “Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar,” International Journal of Precision Engineering and Manufacturing, vol. 14, no. 2, pp. 231-239, 2013.
[34] ISO 10791-1:2015,“Test conditions for machining centres –part1: geometric tests for machines with horizontal spindle (horizontal z-axis),” 2015.
[35] ISO 10791-6:2014, “Test conditions for machining centres –part6: accuracy of speeds and interpolations,” 2014.
[36] S. Ibaraki and W. Knapp, “Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review,” IJAT, vol. 6, pp. 110-124, 2012.
[37] W. Jywe, T.-H. Hsu, and C. H. Liu, “Non-bar, an optical calibration system for five-axis CNC machine tools,” International Journal of Machine Tools and Manufacture, vol. 59, pp. 16-23, 2012.
[38] Y. T. Chen, P. More, C. S. Liu, and C. C. Cheng, “Identification and compensation of position-dependent geometric errors of rotary axes on five-axis machine tools by using a touch-trigger probe and three spheres,” Int. J. Adv. Manuf. Technol., vol. 102, no. 9-12, pp. 3077-3089, 2019.
[39] https://www.okuma.co.jp/english/onlyone/fivetuning/, 5-Axis Auto Tuning System.
[40] Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers Eng., vol. 92, pp. 94-104, 2017.
[41] C.-H. Liu, H.-L. Huang, and H.-W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Applied optics, vol. 48, no. 14, pp. 2767-2777, 2009.
[42] F. Qibo, Z. Bin, C. Cunxing, K. Cuifang, Z. Yusheng, and Y. Fenglin, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Optics express, vol. 21, no. 22, pp. 25805-25819, 2013.
[43] W. T. Lei and Y. Y. Hsu, “Error measurement of five-axis CNC machines with 3D probe–ball,” Journal of Materials Processing Technology, vol. 139, no. 1, pp. 127-133, 2003.
[44] S. Gao, B. Zhang, Q. Feng, C. Cui, S. Chen, and Y. Zhao, “Errors crosstalk analysis and compensation in the simultaneous measuring system for five-degree-of-freedom geometric error,” Applied Optics, vol. 54, no. 3, pp. 458-466, 2015.
[45] J. S. Chen, T. W. Kou, and S. H. Chiou, “Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer,” Precision Engineering, vol. 23, no. 4, pp. 243-252, 1999.
[46] K.-I. Lee and S.-H. Yang, “Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar,” International Journal of Machine Tools and Manufacture, vol. 70, pp. 45-52, 2013.
[47] M. Tsutsumi and A. Saito, “Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements,” Int. J. Mach. Tools Manuf., vol. 44, no. 12-13, pp. 1333-1342, 2004.
[48] Y. Zhang, J. G. Yang, and K. Zhang, “Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar,” Int. J. Adv. Manuf. Technol., vol. 65, no. 1-4, pp. 275-281, 2013.
[49] S. Xiang, J. Yang, and Y. Zhang, “Using a double ball bar to identify position-independent geometric errors on the rotary axes of five-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 70, no. 9, pp. 2071-2082, 2014.
[50] S. H. H. Zargarbashi and J. R. R. Mayer, “Assessment of machine tool trunnion axis motion error, using magnetic double ball bar,” International Journal of Machine Tools and Manufacture, vol. 46, no. 14, pp. 1823-1834, 2006.
[51] K. Xu, G. Li, K. He, and X. Tao, “Identification of position-dependent geometric errors with non-integer exponents for Linear axis using double ball bar,” International Journal of Mechanical Sciences, vol. 170, p. 105326, 2020.
[52] S. Weikert, “R-test, a new device for accuracy measurements on five axis machine tools,” CIRP Ann-Manuf. Technol., vol. 53, no. 1, pp. 429-432, 2004.
[53] C. F. Hong and S. Ibaraki, “Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools,” Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., vol. 37, no. 1, pp. 159-171, 2013.
[54] B. Bringmann and W. Knapp, “Model-based 'Chase-the-ball' calibration of a 5-axes machining center,” CIRP Ann-Manuf. Technol., vol. 55, no. 1, pp. 531-534, 2006.
[55] S. H. H. Zargarbashi and J. R. R. Mayer, “Single setup estimation of a five-axis machine tool eight link errors by programmed end point constraint and on the fly measurement with Capball sensor,” Int. J. Mach. Tools Manuf., vol. 49, no. 10, pp. 759-766, 2009.
[56] S. Ibaraki, C. Oyama, and H. Otsubo, “Construction of an error map of rotary axes on a five-axis machining center by static R-test,” Int. J. Mach. Tools Manuf., vol. 51, no. 3, pp. 190-200, 2011.
[57] M. Gaudreault, A. Joubair, and I. Bonev, “Self-Calibration of an Industrial Robot Using a Novel Affordable 3D Measuring Device,” Sensors, vol. 18, no. 10, p. 19, 2018.
[58] G. H. J. Florussen, H. A. M. Spaan, and T. M. Spaan-Burke, “Assessing the Accuracy of Five Axis Machines by Comparing Machine Measurement Data with Test Work Piece Deviations,” Procedia Manufacturing, vol. 6, pp. 25-32, 2016.
[59] S. Ibaraki, T. Iritani, and T. Matsushita, “Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe,” Int. J. Mach. Tools Manuf., vol. 58, pp. 44-53, 2012.
[60] S. Ibaraki, T. Iritani, and T. Matsushita, “Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe,” International Journal of Machine Tools and Manufacture, vol. 68, pp. 21-29, 2013.
[61] J. H. Jeong, G. Khim, J. S. Oh, and S.-C. Chung, “Method for measuring location errors using a touch trigger probe on four-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 99, no. 1, pp. 1003-1012, 2018.
[62] Z. Jiang, B. Song, X. Zhou, X. Tang, and S. Zheng, “Single setup identification of component errors for rotary axes on five-axis machine tools based on pre-layout of target points and shift of measuring reference,” International Journal of Machine Tools and Manufacture, vol. 98, pp. 1-11, 2015.
[63] T. Erkan, J. R. R. Mayer, and Y. Dupont, “Volumetric distortion assessment of a five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact,” Precision Engineering, vol. 35, no. 1, pp. 116-125, 2011.
[64] J. R. R. Mayer, “Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact,” CIRP Annals, vol. 61, no. 1, pp. 515-518, 2012.
[65] J. B. de Aquino Silva, R. J. Hocken, J. A. Miller, G. W. Caskey, and P. Ramu, “Approach for uncertainty analysis and error evaluation of four-axis co-ordinate measuring machines,” The International Journal of Advanced Manufacturing Technology, vol. 41, no. 11, p. 1130, 2008.
[66] J. B. de Aquino Silva and M. Burdekin, “A modular space frame for assessing the performance of co-ordinate measuring machines (CMMs),” Precision Engineering, vol. 26, no. 1, pp. 37-48, 2002.
[67] J. P. Choi, B. K. Min, and S. J. Lee, “Reduction of machining errors of a three-axis machine tool by on-machine measurement and error compensation system,” Journal of Materials Processing Technology, vol. 155-156, pp. 2056-2064, 2004.
[68] Z. Jiang, S. Bao, X. Zhou, X. Tang, and S. Zheng, “Identification of location errors by a touch-trigger probe on five-axis machine tools with a tilting head,” The International Journal of Advanced Manufacturing Technology, vol. 81, no. 1, pp. 149-158, 2015.
[69] Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf., vol. 89, pp. 182-191, 2015.
[70] T. Erkan, J. Mayer, and Y. Dupont, "Compensation for the unknown geometry of a reconfigurable uncalibrated 3D ball artefact for five-axis machine volumetric check," in Proceedings of the 24th ASPE Annual Meeting, 2009.
[71] Y.-T. Chen, P. More, and C.-S. Liu, “Identification and verification of location errors of rotary axes on five-axis machine tools by using a touch-trigger probe and a sphere,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 9, pp. 2653-2667, 2019.
[72] C. D. Li, X. L. Liu, R. Y. Li, S. Wu, and H. W. Song, “Geometric Error Identification and Analysis of Rotary Axes on Five-Axis Machine Tool Based on Precision Balls,” Appl. Sci.-Basel, vol. 10, no. 1, p. 17, 2020.
[73] Z. Jiang, B. Song, X. Zhou, X. Tang, and S. Zheng, “On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor,” International Journal of Machine Tools and Manufacture, vol. 95, pp. 1-12, 2015.
[74] Z. Jiang, X. Tang, X. Zhou, and S. Zheng, “Machining tests for identification of location errors on five-axis machine tools with a tilting head,” The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1, pp. 245-254, 2015.
[75] S. Ibaraki, I. Yoshida, and T. Asano, “A machining test to identify rotary axis geometric errors on a five-axis machine tool with a swiveling rotary table for turning operations,” Precision Engineering, vol. 55, pp. 22-32, 2019.
[76] S. Ibaraki, M. Sawada, A. Matsubara, and T. Matsushita, “Machining tests to identify kinematic errors on five-axis machine tools,” Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., vol. 34, no. 3, pp. 387-398, 2010.
[77] S. Ibaraki and Y. Ota, “A machining test to calibrate rotary axis error motions of five-axis machine tools and its application to thermal deformation test,” International Journal of Machine Tools and Manufacture, vol. 86, pp. 81-88, 2014.
[78] C. Hong, S. Ibaraki, and A. Matsubara, “Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools,” Precision Engineering, vol. 35, no. 1, pp. 1-11, 2011.
[79] H. Murakami, A. Katsuki, and T. Sajima, “Simple and simultaneous measurement of five-degrees-of-freedom error motions of high-speed microspindle: Error analysis,” Precision Engineering, vol. 38, no. 2, pp. 249-256, 2014.
[80] Z. He, J. Fu, L. Zhang, and X. Yao, “A new error measurement method to identify all six error parameters of a rotational axis of a machine tool,” International Journal of Machine Tools and Manufacture, vol. 88, pp. 1-8, 2015.
[81] C. Chen, P.-D. Lin, and W. Jywe, “An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts,” Optics Express, vol. 15, no. 22, pp. 14601-14617, 2007.
[82] J. Li, Q. Feng, C. Bao, and Y. Zhao, “Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser,” Optics express, vol. 26, no. 3, pp. 2535-2545, 2018.
[83] W. Gao et al., “Measurement technologies for precision positioning,” CIRP Annals, vol. 64, no. 2, pp. 773-796, 2015.
[84] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair mechanisms based on matrices,” Journal of applied mechanics, vol. 77, no. 2, pp. 215-221, 1955.
[85] P.-D. Lin and K. Ehmann, “Direct volumetric error evaluation for multi-axis machines,” International Journal of Machine Tools and Manufacture, vol. 33, no. 5, pp. 675-693, 1993.
[86] P. D. Lin and C. S. Tzeng, “Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool,” International Journal of Machine Tools and Manufacture, vol. 48, no. 3, pp. 338-349, 2008.
[87] Y. X. Guo, B. Song, X. Q. Tang, X. D. Zhou, and Z. X. Jiang, “A measurement method for calibrating kinematic parameters of industrial robots with point constraint by a laser displacement sensor,” Meas. Sci. Technol., vol. 31, no. 7, p. 16, 2020.
[88] A. Nubiola and I. A. Bonev, “Absolute calibration of an ABB IRB 1600 robot using a laser tracker,” Robot. Comput.-Integr. Manuf., vol. 29, no. 1, pp. 236-245, 2013.
[89] V. S. B. Kiridena and P. M. Ferreira, “Parameter estimation and model verification of first order quasistatic error model for three-axis machining centers,” International Journal of Machine Tools and Manufacture, vol. 34, no. 1, pp. 101-125, 1994.
[90] M. Rahman, J. Heikkala, and K. Lappalainen, “Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory,” International Journal of Machine Tools and Manufacture, vol. 40, no. 10, pp. 1535-1546, 2000.
[91] J. W. Fan, J. L. Guan, W. C. Wang, Q. Luo, X. L. Zhang, and L. Y. Wang, “A universal modeling method for enhancement the volumetric accuracy of CNC machine tools,” Journal of Materials Processing Technology, vol. 129, no. 1, pp. 624-628, 2002.
[92] Y. Y. Hsu and S. S. Wang, “A new compensation method for geometry errors of five-axis machine tools,” International Journal of Machine Tools and Manufacture, vol. 47, no. 2, pp. 352-360, 2007.
[93] 劉建聖, “微型音圈馬達自動對焦致動器的設計與其光學性能分析,” 國立成功大學機械工程學系, 博士論文, 2010
[94] S. Li, L. Zeng, P. Feng, Y. Li, C. Xu, and Y. Ma, “Accurate compensation method for probe pre-travel errors in on-machine inspections,” The International Journal of Advanced Manufacturing Technology, vol. 103, no. 5, pp. 2401-2410, 2019.
[95] https://www.blum-novotest.com/cn.html, Blum-Novotest GmbH
[96] 華玉亮,盛伯浩, “觸發式測頭全方位精密測量技術,” 制造技術與機床, no. 04, pp. 11-14+3, 1994.
[97] 章青 et al., “數控機床誤差補償技術及應用測頭系統──誤差分析和補償技術,” 制造技術與機床, no. 05, pp. 35-37, 1999.
[98] 盛伯浩, 楊曉軍, and 華玉亮, “提高觸發式測頭在機檢測精度,” 制造技術與機床, no. 09, pp. 21-23+54, 1997.
[99] 胡艷娥 and 諸進才, “在機檢測觸發式測頭系統的誤差分析與實驗,” 機電工程技術, no. 02, pp. 9-13, 2015.
[100] M. Jankowski, A. Woźniak, and M. Byszewski, “Machine tool probes testing using a moving inner hemispherical master artefact,” Precision Engineering, vol. 38, no. 2, pp. 421-427, 2014.
[101] A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing Systems in Dimensional Metrology,” CIRP Annals, vol. 53, no. 2, pp. 657-684, 2004.
[102] A. Kung, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol., vol. 18, no. 2, pp. 319-327, 2007.
[103] https://www.ctemag.com/news/articles/machine-technology-manually-measuring-5-axis-centerlines, Manually measuring 5-axis centerlines
[104] https://www.hurco.com/en-us/support/Documents/Alternate_5-Axis_Trunnion_Centerline_Procedure.pdf, Alternate 5-Axis Centerline Procedure, Hurco Trunion Machines
[105] 張智祥, “以權重及最小平方法對圓、橢圓二次方程式之擬合,” 國立中興大學機械工程學系, 碩士論文, 2007
[106] https://www.syntecclub.com/, 新代控制器
[107] https://new.siemens.com/kr/en/markets/machinebuilding/machine-tools/cnc4you/cnc4you-videos/ttt-gen/cycle996.html, CYCLE996
[108] F. Li, Z. Qiang, K. F. Ehmann, C. Jian, and T. M. Li, “A calibration method for overconstrained spatial translational parallel manipulators,” Robot. Comput.-Integr. Manuf., vol. 57, pp. 241-254, 2019.
[109] L. Wu and H. L. Ren, “Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3D Position Data,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 1, pp. 314-324, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw