進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408202010335100
論文名稱(中文) 音樂家與非音樂家的和諧與不和諧音知覺:相同設計之事件相關腦電位與功能性磁振造影實驗的分別與綜合分析
論文名稱(英文) Musicians and non-musicians’ dissonance/consonance perception: separate and joint analyses of event-related potential (ERP) and functional Magnetic Resonance Imaging (fMRI) experiments of the same design
校院名稱 成功大學
系所名稱(中) 醫學資訊研究所
系所名稱(英) Institute of Medical Informatics
學年度 108
學期 2
出版年 109
研究生(中文) 趙韓信
研究生(英文) HanShin Jo
學號 Q56077017
學位類別 碩士
語文別 英文
論文頁數 38頁
口試委員 指導教授-梁勝富
共同指導教授-龔俊嘉
口試委員-蕭富仁
中文關鍵字 腦電圖  功能性磁振造影  和諧/不和諧  粗糙度  音樂家 
英文關鍵字 ERPs  fMRI  Consonance/Dissonance  Roughness  Musician 
學科別分類
中文摘要 音樂家具備著超乎凡人的聽覺能力,能夠明確的感知兩音符之間之音調差
異。對於音調的感知可以依照音符間隔之間的音高差異分成和諧(consonant)與不和諧(dissonant)。既往研究成果指出,音樂家與非音樂家在音調和諧程度的辨別上,可能仰賴不同的辨別方式。其中可能之方式為依照西方音調理論(Western Tonal Theory),即從頻率比例感知,或者依心理聲學(Psychoacoustics),即依頻率差異進行辨別。此研究利用腦電圖(EEG)與功能性磁振造影(fMRI),搭配與事件相關之隨機試次間隔設計(jittered event-related)以獲得更完整之辨識音調和諧與不和諧時對應之大腦活動影像。實驗邀請三十二位音樂家與三十位非音樂家參與進行,實驗者於二十個音高區間與不同粗糙度下辨別和諧與不和諧之行為實驗。其中,音調之粗糙度是以正交的方式混雜著頻率於100赫茲至500赫茲之範圍。受試者中有十五位音樂家與十四位非音樂家進行腦波實驗,而功能性磁振造影之部分則有十四位音樂家與十七位非音樂家。行為實驗上之發現支持先前研究結果,音樂家與音高區間之高度關係和非音樂家與粗糙度之間之高度關係確實存在。腦波實驗之結果更進一步地佐證音調差異的操控與改變會增加組與組之間的互動效應和腦波相對位置N1波幅至 mid-line FZ、FCZ、CZ以及CPZ之頻率區間。利用ANOVA與MVPA searchlight分析功能性磁振造影之數據,亦發現結果指出音樂家與非音樂家之額葉,包刮內側前額葉皮層(Medial Prefrontal Cortex)、額中迴(Medial Frontal Gyrus)、額上迴(Superior Frontal Gyrus)、以及位於顳葉之聽覺皮層在功能上的差異。此研究亦利用表徵相似性(Representational Similarity Analysis)以辨認不同刺激與12個頻道之ERP於不同頻率性質下相異度矩陣精準對應之大腦區域,假定在辨別音調和諧或不和諧之情況下,音樂家利用top-down driven之辨別過程,而非音樂家則利用bottom-up之辨別過程。綜上所述,研究結果顯示音樂家與非音樂家在辨別音調和諧與不和諧時,分別仰賴的是音高區間與粗糙度感知。就我們所知,此研究為結合音高區間與粗糙範圍之多模型數據分析之首例。由於音樂家不斷的對於音調和諧之感知進行學習與訓練,此實驗結果更進一步的佐證大腦之可塑性。
英文摘要 Musician’s sensibility of detecting a tonal difference between two musical notes is extraordinary. The perception of musical tonality can be either consonant or dissonant, depending on pitch relationship between intervals. Previous studies suggested that musician and nonmusician may have different reliance upon discerning two intervals from the perspective of frequency ratio (Western tonal theory) or the frequency difference (psychoacoustics). In this study, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are used with jittered event-related design to obtain a finer brain activity in response to tonal dissonance/consonance. Thirty-two musicians and thirty nonmusicians judged dissonance and consonance at 20 sounds of pitch interval and roughness orthogonally mixed across frequency range from 100Hz to 500Hz for behavioral. The fifteen musicians and fourteen nonmusicians results are collected for EEG experiments, and fourteen musicians and seventeen nonmusicians for fMRI experiments. Behavior findings supported previous evidence for an association between musician with pitch interval and nonmusician with roughness, the EEG results further demonstrated that manipulation of tonal differences increased interaction effect between groups and frequency interval at N1 amplitude across the midline FZ, FCZ, CZ and CPZ channels. The fMRI results using ANOVA and MVPA searchlight also indicated the functional dissociations between musicians and non-musicians in the frontal lobe including Medial Prefrontal Cortex (MPFC), Medial Frontal Gyrus (MFG), Superior Frontal Gyrus (SFG), and in the temporal lobe, such as primary auditory cortex. Furthermore, the representational similarity analysis (RSA) was used to identify spatio-temporally corresponding brain regions for dissimilarity matrix designed on different frequency properties across stimuli and 12-channels ERP, postulating top-down driven consonance/dissonance judgments processing in musicians, and bottom-up processing for non-musicians. Together, these results suggest that musicians and non-musicians rely upon pitch intervals and sensory roughness, respectively, for consonance/dissonance perception. To our knowledge, this is the first study to combine multi-modal data across the pitch interval and roughness spectrum. Our results further support the brain plasticity as a result of musical training in consonance perception.
論文目次 Cover ……….. i
Certificate ……….. ii
Abstract ...…….. iv
Contents ...…….. vii
List of Figures ...…….. viii
List of Tables ...…….. viii
1. Introduction ……….. 1
2. Methods ……….. 3
3. Results ………. 10
4. Discussion ………. 24
5. Conclusion ………. 25
Reference ………. 26
Supplementary Information ………. 30
參考文獻 Bailes, F., Dean, R. T., &Broughton, M. C. (2015). How different are our perceptions of equal-tempered and microtonal intervals? A behavioural and EEG survey. PLoS ONE, 10(8), e0135082. https://doi.org/10.1371/journal.pone.0135082
Bidelman, G. M., &Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience, 29(42), 13165–13171. https://doi.org/10.1523/JNEUROSCI.3900-09.2009
Blood, A. J., Zatorre, R. J., Bermudez, P., &Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382–387.
Brattico, E., Tervaniemi, M., Valimaki, V., VanZuijen, T., &Peretz, I. (2003). Cortical Correlates of Acquired Deafness to Dissonance. Annals of the New York Academy of Sciences, 999, 158–160. https://doi.org/10.1196/annals.1284.019
Bravo, F., Cross, I., Hopkins, C., Gonzalez, N., Docampo, J., Bruno, C., &Stamatakis, E. A. (2020). Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Human Brain Mapping, 41(1), 46–66. https://doi.org/10.1002/hbm.24786
Delorme, A., &Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Foo, F., King-Stephens, D., Weber, P., Laxer, K., Parvizi, J., &Knight, R. T. (2016). Differential processing of consonance and dissonance within the human superior temporal gyrus. Frontiers in Human Neuroscience, 10, 154.
Koelsch, S. (2011). Toward a neural basis of music perception - a review and updated model. Frontiers in Psychology, 2(JUN), 110. https://doi.org/10.3389/fpsyg.2011.00110
Kriegeskorte, N., Goebel, R., &Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3863–3868. https://doi.org/10.1073/pnas.0600244103
Kriegeskorte, N., &Kievit, R. A. (2013). Representational geometry: integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. https://www.sciencedirect.com/science/article/pii/S1364661313001277
Kriegeskorte, N., Mur, M., &Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(NOV). https://doi.org/10.3389/neuro.06.004.2008
Krumhansl, C. L. (2010). Cognitive Foundations of Musical Pitch. In Cognitive Foundations of Musical Pitch (Vol. 17). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195148367.001.0001
Kung, C.-C., Hsieh, T.-H., Liou, J.-Y., Lin, K.-J., Shaw, F.-Z., &Liang, S.-F. (2014). Musicians and non-musicians’ different reliance of features in consonance perception: A behavioral and ERP study. Clinical Neurophysiology, 125(5), 971–978.
Large, E. W. (2009). Music, Thought, and Feeling: Understanding the Psychology of Music. Music Perception, 27(2), 145.
Liang, C., Earl, B., Thompson, I., Whitaker, K., Cahn, S., Xiang, J., Fu, Q. J., &Zhang, F. (2016). Musicians are better than non-musicians in frequency change detection: Behavioral and electrophysiological evidence. Frontiers in Neuroscience, 10(OCT). https://doi.org/10.3389/fnins.2016.00464
Malmberg, C. F. (1918). The perception of consonance and dissonance. Psychological Monographs, 25(2), 93–133. https://doi.org/10.1037/h0093119
Mumford, J. A., Turner, B. O., Ashby, F. G., &Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage, 59(3), 2636–2643. https://doi.org/10.1016/j.neuroimage.2011.08.076
Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., &Kriegeskorte, N. (2014). A Toolbox for Representational Similarity Analysis. PLoS Computational Biology, 10(4). https://doi.org/10.1371/journal.pcbi.1003553
O’Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M., &Johansen-Berg, H. (2012). Tools of the trade: Psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7(5), 604–609. https://doi.org/10.1093/scan/nss055
Oosterhof, N. N., Connolly, A. C., &Haxby, J.V. (2016). CoSMoMVPA: Multi-modal multivariate pattern analysis of neuroimaging data in matlab/GNU octave. Frontiers in Neuroinformatics, 10(JUL). https://doi.org/10.3389/fninf.2016.00027
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., Baldoli, C., &Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107
Peretz, I., Blood, A. J., Penhune, V., &Zatorre, R. (2001). Cortical deafness to dissonance. Brain, 124(5), 928–940. https://doi.org/10.1093/brain/124.5.928
Peretz, I., &Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114. https://doi.org/10.1146/annurev.psych.56.091103.070225
Perrachione, T. K., &Ghosh, S. S. (2013). Optimized design and analysis of sparse-sampling fMRI experiments. Frontiers in Neuroscience, 7 APR. https://doi.org/10.3389/fnins.2013.00055
Tramo, M. J., Bharucha, J. J., &Musiek, F. E. (1990). Music perception and cognition following bilateral lesions of auditory cortex. Journal of Cognitive Neuroscience, 2(3), 195–211. https://doi.org/10.1162/jocn.1990.2.3.195
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., &Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4(AUG), 492. https://doi.org/10.3389/fpsyg.2013.00492
Xia, M., Wang, J., &He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068910
Yost, W. A. (2014). Psychoacoustics and Auditory Perception. In Perspectives on Auditory Research (pp. 611–631). Springer. https://doi.org/10.1007/978-1-4614-9102-6_33
Zwicker, E., Flottorp, G., &Stevens, S. S. (1957). Critical band width in loudness summation. The Journal of the Acoustical Society of America, 29(5), 548–557.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw