進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201815244900
論文名稱(中文) 釹鏑共摻雜鈦酸鍶塊材之製備及其熱電性質之研究
論文名稱(英文) Preparation and thermoelectric properties of Nd and Dy co-doped SrTiO3 bulk materials
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 林家弘
研究生(英文) Jia-Hong Lin
電子信箱 harry1260@gmail.com
學號 N56054376
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-黃啟祥
口試委員-齊孝定
口試委員-劉全璞
口試委員-吳欣潔
中文關鍵字 熱電材料  鈦酸鍶  共摻雜  固相反應法 
英文關鍵字 Thermoelectric materials  SrTiO3  co-doping  solid-state reaction 
學科別分類
中文摘要 熱電材料是一種可以透過溫度梯度的變化,將熱能以及電能互相轉換的能源材料,其在溫差發電與熱電致冷方面具有相當廣泛的應用價值。鈦酸鍶具有無毒、高溫化學穩定性良好,以及透過摻雜異質原子就能具備不錯的電傳導性等優點,是一種具有發展潛力的氧化物熱電材料。
為提升鈦酸鍶塊材之熱電性質,本研究選用釹、鏑為共摻雜元素,以固相反應法分別製備Sr0.8Nd0.2TiO3及Sr0.9Dy0.1TiO3粉體,再依0, 30, 50, 70, 100 mole%之比例混合。經成形後,於1500 ℃還原氣氛中燒結6小時形成塊材。塊材之結晶相及顯微結構是以XRD及SEM分析,而熱電性質之量測範圍為303~673 K。
固相反應法製備之粉體除鈦酸鍶主相外,另含有少量第二相之Nd2Ti2O7或Dy2Ti2O7;但粉體經燒結成塊材後則僅含鈦酸鍶相,其相對密度介於92~94%。
各塊材之電傳導率皆是隨溫度之增加呈先增後減的趨勢,其電傳導行為是由半導體型轉成金屬型。各塊材的電傳導率是隨Dy成分比例的增加而減少,0Dy試樣 (Sr0.8Nd0.2TiO3) 具有最佳的電傳導率,於423 K下為1435 S/cm。各試樣的Seebeck係數絕對值是隨Dy成分比例的增加而增加,且所有試樣於量測區間均為N型半導體之特性。03Dy試樣 (30 mole% Sr0.9Dy0.1TiO3+ 70 mole% Sr0.8Nd0.2TiO3) 於573 K時,具有最高之功率因子為1250 μW/mK2。
熱傳導率方面,因Nd、Dy的摻雜比例能夠改變鈦酸鍶的晶格扭曲程度,實驗結果顯示,鈦酸鍶的晶格扭曲程度越大,能有效降低晶格熱傳導率。在所有塊材試樣中, 07Dy試樣於673 K所量測到的熱傳導率最低,為4.06 W/mK。
綜合各項熱電性質後所計算出各試樣的ZT值表現結果顯示,Nd及Dy共摻雜能夠有效提升鈦酸鍶的熱電性質,有共摻雜之07Dy試樣具有最佳之ZT值表現,於673 K為0.19,相較沒有共摻雜之10Dy試樣,ZT值提升了10 %;與0Dy比較,則ZT值提升了25 %。
英文摘要 To improve the thermoelectric properties of SrTiO3, Nd and Dy elements were doped in SrTiO3. Sr0.8Nd0.2TiO3 and Sr0.9Dy0.1TiO3 powders were prepared via a traditional solid state reaction, respectively. Bulks were fabricated by mixing Sr0.8Nd0.2TiO3 and Sr0.9Dy0.1TiO3 powders, followed by the proportions, 0, 30, 50, 70, 100 mole%. The mixture powders were formed and sintered at 1500℃ for 6 hours under a reducing atmosphere of 5 vol% hydrogen in argon. The crystal structures and microstructures were observed by XRD and SEM and thermoelectric properties were measured from 303 to 673 K. The results indicate that the crystal structure of powders is mainly cubic SrTiO3, and the minor phase is Nd2Ti2O7 or Dy2Ti2O7. However, only single phase of cubic SrTiO3 is found in bulks. The values of relative density of bulks are in the range of 92-94%. With the decreasing content of dysprosium, electrical conductivity is enhanced. The maximum electrical conductivity is 1435 S/cm at 423K for 0Dy sample. With the increasing content of dysprosium, Seebeck coefficient is enhanced. According to the results, all samples were characterized by n-type semiconductor-like behavior. The maximum value of power factor is 1250 μW/mK2 at 573K for 03Dy sample. The maximum value of ZT, ZT = 0.19 at 673 K was obtained for 07Dy sample with 7 mole% Dy and 6 mole% Nd, which is a result of the high power factor and low thermal conductivity.
論文目次 目錄
中文摘要 I
Extended Abstract III
誌謝 XIII
目錄 XVII
表目錄 XX
圖目錄 XXI
第一章 緒論 1
1-1 前言 1
1-2 實驗動機目的及策略 4
第二章 文獻回顧 7
2-1基本熱電效應 7
2-1-1 熱電效應 7
2-1-2 熱電性質與能源轉換效率 9
2-2 熱電效應的發展及應用 11
2-3 提升熱電性質之方法 14
2-4 熱電材料的種類 17
2-4-1 金屬基熱電材料 17
2-4-2 陶瓷熱電材料 19
2-4-3 高分子熱電材料 19
2-5 氧化物陶瓷熱電材料 20
2-5-1 P-type 氧化物 20
2-5-2 N-type 氧化物 22
2-6 鈦酸鍶相關背景及研究動態 24
2-6-1 鈦酸鍶材料的常見製備方法 25
2-6-2 鈦酸鍶的燒結特性相關研究 28
2-7 共摻雜稀土元素對鈦酸鍶熱電性質影響之相關文獻 31
第三章 實驗方法與步驟 50
3-1 實驗用藥品及原料 50
3-2 實驗流程 50
3-3 材料性質之分析 51
3-3-1 粉體及燒結體之結晶相鑑定 51
3-3-2 燒結體密度之量測 52
3-3-3 顯微結構與化學成分分析 52
3-3-4 燒結體之表面化學鍵結分析 53
3-3-5 燒結體表面色差分析 53
3-4 燒結體熱電性質之分析 54
3-4-1 電傳導率量測 54
3-4-2 Seebeck係數量測 54
3-4-3 熱傳導率量測 54
第四章 結果與討論 65
4-1 粉體之相鑑定及顯微結構 65
4-2 塊材之相鑑定及顯微結構 65
4-3 塊材之表面色差測定 68
4-4 塊材之熱電性質 69
4-4-1 電傳導率 69
4-4-2 Seebeck 係數 70
4-4-3 Power factor 70
4-4-4 熱傳導率 71
4-4-5 ZT值 73
第五章 結論 90
參考文獻 91

參考文獻 [1] H.J. Goldsmid, Introduction to thermoelectricity, Second ed., Springer, (2010).
[2] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457-1461 (2008).
[3] D.M. Rowe, CRC handbook of thermoelectrics, First ed., CRC press, (1995).
[4] T.M. Tritt, M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bulletin, 31, 188-198 (2011).
[5] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nat Mater, 6, 129-134 (2007).
[6] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229-2232 (2002).
[7] C.H. Kuo, H.S. Chien, C.S. Hwang, Y.W. Chiu, M.S. Jeng, M. Yoshimura, Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering, Materials Transactions, 52, 795-801 (2011).
[8] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.-H. Lin, C.-W. Nan, High Performance Oxides-Based Thermoelectric Materials, JOM, 67, 211-221 (2014).
[9] H. Wang, W. Su, J. Liu, C. Wang, Recent development of n-type perovskite thermoelectrics, Journal of Materiomics, 2, 225-236 (2016).
[10] J. Liu, C.L. Wang, Y. Li, W.B. Su, Y.H. Zhu, J.C. Li, L.M. Mei, Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics, Journal of Applied Physics, 114, 223714 (2013).
[11] A. Khajepour, F. Rahmani, An approach to design a (90)Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP, Appl Radiat Isot, 119, 51-59 (2017).
[12] J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science, 357, eaak9997 (2017).
[13] R. Richman, J. Stringerb, Prospects for efficient thermoelectric materials in the near term, San Diego, CA, DARPA/DOE High Efficient Thermoelectric. (2002).
[14] O. Francis, C.J. Lekwuwa, I.H. John, Performance Evaluation of a Thermoelectric Refrigerator, International Journal of Engineering and Innovative Technology (IJEIT), 2, 18-24 (2013).
[15] R.P. Chasmar, R. Stratton, The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators†, Journal of Electronics and Control, 7, 52-72 (1959).
[16] G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility, Physical Review Letters, 91, 148301 (2003).
[17] X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications, Renewable and Sustainable Energy Reviews, 32, 486-503 (2014).
[18] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature materials, 7, 105 (2008).
[19] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, 23, 913-935 (2003).
[20] J. Lofy, L. Bell, Thermoelectrics for environmental control in automobiles, Thermoelectrics, 2002. Proceedings ICT'02. Twenty-First International Conference on, IEEE, pp. 471-476 (2002).
[21] F. Stabler, Automotive applications of high efficiency thermoelectrics, Proceedings of DARPA/ONR/DOE High Efficiency Thermoelectric Workshop, pp. 1-26 (2002).
[22] F. Rosi, Thermoelectricity and thermoelectric power generation, Solid-State Electronics, 11, 833-868 (1968).
[23] V. K. Zaitsev, M. I. Fedorov, I. Eremin, E. Gurieva, D. Rowe, Thermoelectrics handbook: macro to nano, CRC Taylor & Francis, Boca Raton, FL (2006).
[24] G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chemical reviews, 116, 12123-12149 (2016).
[25] M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?, Applied Physics A, 116, 433-470 (2014).
[26] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597 (2001).
[27] C. Gayner, K.K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, 83, 330-382 (2016).
[28] H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, R. Shirataki, Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46− x (nominal x= 14–18) clathrates prepared by combining arc melting and spark plasma sintering methods, Journal of Solid State Chemistry, 193, 94-104 (2012).
[29] B.C. Chakoumakos, B.C. Sales, Skutterudites: Their structural response to filling, Journal of alloys and compounds, 407, 87-93 (2006).
[30] X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, Journal of the American Chemical Society, 133, 7837-7846 (2011).
[31] C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials, Chinese science bulletin, 59, 2073-2091 (2014).
[32] N. Shutoh, S. Sakurada, Thermoelectric properties of the Tix(Zr0.5Hf0.5)1− xNiSn half-Heusler compounds, Journal of alloys and compounds, 389, 204-208 (2005).
[33] Y. Shinohara, Y. Imai, Y. Isoda, K. Hiraishi, H. Nakanishi, A new challenge of polymer thermoelectric materials as ecomaterials, Materials science forum, Trans Tech Publ, pp. 2329-2332 (2007).
[34] M. Ohtaki, Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source, Journal of the Ceramic Society of Japan, 119, 770-775 (2011).
[35] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature materials, 6, 129 (2007).
[36] H. Ohta, K. Sugiura, K. Koumoto, Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3, Inorganic chemistry, 47, 8429- 8436 (2008).
[37] J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, Journal of the European Ceramic Society, 32, 525-540 (2012).
[38] M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure, Applied Physics Letters, 82, 1851-1853 (2003).
[39] N. Van Nong, N. Pryds, S. Linderoth, M. Ohtaki, Enhancement of the Thermoelectric Performance of p‐Type Layered Oxide Ca3Co4O9+δ Through Heavy Doping and Metallic Nanoinclusions, Advanced materials, 23, 2484-2490 (2011).
[40] P. Liu, G. Chen, Y. Cui, H. Zhang, F. Xiao, L. Wang, H. Nakano, High temperature electrical conductivity and thermoelectric power of NaxCoO2, Solid State Ionics, 179, 2308-2312 (2008).
[41] L. Wang, M. Wang, D. Zhao, Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method, Journal of Alloys and Compounds, 471, 519-523 (2009).
[42] M. Ito, D. Furumoto, Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method, Journal of Alloys and Compounds, 450, 517-520 (2008).
[43] K. Fujita, T. Mochida, K. Nakamura, High-temperature thermoelectric properties of NaxCoO2-δ single crystals, Japanese Journal of Applied Physics, 40, 4644 (2001).
[44] P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties, Nano letters, 11, 4337-4342 (2011).
[45] S. Saini, P. Mele, H. Honda, K. Matsumoto, K. Miyazaki, A. Ichinose, Thermoelectric properties of Al-doped ZnO thin films, Journal of Electronic Materials, 43, 2145-2150 (2014).
[46] L. Pi, S. Hébert, C. Martin, A. Maignan, B. Raveau, Comparison of CaMn1− xRuxO3 and CaMn1− yMoyO3 perovskites, Physical Review B, 67, 024430 (2003).
[47] Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, X. Liu, High Temperature Thermoelectric Response of Electron-Doped CaMnO3, Chemistry of Materials, 21, 4653-4660 (2009).
[48] L. Bocher, M. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1− xNbxO3 (x≤ 0.08) Perovskite-Type Phases As Promising New High-Temperature n-Type Thermoelectric Materials, Inorganic chemistry, 47, 8077-8085 (2008).
[49] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1− xLaxTiO3 (0 ≤ x ≤ 0. 1), Physical Review B, 63, 113104 (2001).
[50] K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, S. Liu, Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production, RSC Advances, 1, 1661 (2011).
[51] F. Lichtenberg, The story of Sr2RuO4, Progress in solid state chemistry, 30, 103-131 (2002).
[52] S. Sõmiya, Hydrothermal reactions for materials science and engineering: an overview of research in Japan, ed., Springer Science & Business Media, (2012).
[53] J. Hannay, On the artificial formation of the diamond, Proceedings of the Royal Society of London, 30, 450-461 (1879).
[54] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, ed., William Andrew, (2012).
[55] J.O. Eckert, C.C. Hung‐Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79, 2929-2939 (1996).
[56] W. Zhu, C. Wang, S. Akbar, R. Asiaie, Fast-sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties, Journal of materials science, 32, 4303-4307 (1997).
[57] S.-Y. Cheng, S.-L. Fu, C.-C. Wei, Sintering of SrTiO3 with Li2CO3 addition, Ceramics International, 15, 231-236 (1989).
[58] K.S. Liu, I.N. Lin, Enhanced densification of SrTiO3 perovskite ceramics, Applications of Ferroelectrics, 261-264 (1991).
[59] S. Cho, P. Johnson, Evolution of the microstructure of undoped and Nb-doped SrTiO3, Journal of materials science, 29, 4866-4874 (1994).
[60] K. Maca, V. Pouchly, Z. Shen, Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Integrated Ferroelectrics, 99, 114-124 (2008).
[61] Q. Fu, S. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society, 28, 811-820 (2008).
[62] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency, Journal of Power Sources, 185, 26-31 (2008).
[63] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R. Kumar, P.S. Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, Journal of Alloys and Compounds, 486, 711-715 (2009).
[64] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, L.M. Mei, Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic, Materials Research Bulletin, 45, 809-812 (2010).
[65] H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei, Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3, Journal of the American Ceramic Society, 94, 838-842 (2011).
[66] T. Teranishi, Y. Ishikawa, H. Hayashi, A. Kishimoto, M. Katayama, Y. Inada, X.D. Zhou, Thermoelectric Efficiency of Reduced SrTiO3 Ceramics Modified with La and Nb, Journal of the American Ceramic Society, 96, 2852-2856 (2013).
[67] T.Q. Thong, T.T.H. Le, N.T. Tinh, Investigation of the influence of singly and dually doping effect on scattering mechanisms and thermoelectric properties of perovskite-type STO, Materials Transactions, 56, 1365-1369 (2015).
[68] Y. Li, W. Wei, L. Yang, M. Su, Y. Sun, G. Min, La and Nd co-doped effect on thermoelectric properties of SrTiO3 ceramics, Chiang Mai Journal of Science, 43, 306-310 (2016).
[69] J. Han, Q. Sun, Y. Song, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics, Journal of Alloys and Compounds, 705, 22-27 (2017).
[70] J. Han, Q. Sun, W. Li, Y. Song, Microstructure and thermoelectric properties of La0.1Dy0.1SrxTiO3 ceramics, Ceramics International, 43, 5557-5563 (2017).
[71] D.R. Lide, CRC handbook of chemistry and physics 93rd ed., CRC Press, Boca Raton, FL (2012).
[72] http://www.colortell.com/1463.html, online.
[73] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst., A32, 751-767 (1967).
[74] A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms, Journal of Materials Chemistry A, 5, 3909-3922 (2017).
[75] A.V. Naumkin, A. Kraut-Vass, C.J. Powell, NIST X-ray photoelectron spectroscopy database, ed., Measurement Services Division of the National Institute of Standards and Technology (NIST) Technology Services, (2008).
[76] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions, Phys Chem Chem Phys, 16, 26946-26954 (2014).
[77] H. Tan, Z. Zhao, W.-b. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS applied materials & interfaces, 6, 19184-19190 (2014).
[78] Y. Cui, J.R. Salvador, J. Yang, H. Wang, G. Amow, H. Kleinke, Thermoelectric Properties of Heavily Doped n-Type SrTiO3 Bulk Materials, Journal of Electronic Materials, 38, 1002-1007 (2009).
[79] C. Gong, G. Dong, J. Hu, Y. Chen, M. Qin, S. Yang, F. Gao, Effect of reducing annealing on the microstructure and thermoelectric properties of La–Bi co-doped SrTiO3 ceramics, Journal of Materials Science: Materials in Electronics, 28, 14893-14900 (2017).
[80] A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate, Chemistry of Materials, 27, 4995-5006 (2015).
[81] L. Xue-Dong, Y.-H. Park, Structure and transport properties of (Bi1-xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering, Materials Transactions, 43, 681-687 (2002).
[82] P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li, H.-M. Zhu, Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics, Journal of Electronic Materials, 40, 926-931 (2010).
[83] J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei, Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics, Journal of Electronic Materials, 41, 3073-3076 (2012).
[84] B. Abeles, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Physical Review, 131, 1906 (1963).
[85] A. Okazaki, M. Kawaminami, Lattice constant of strontium titanate at low temperatures, Materials Research Bulletin, 8, 545-550 (1973).
[86] A. Tkach, J.S. Amaral, S. Zlotnik, V.S. Amaral, P.M. Vilarinho, Enhancement of the dielectric permittivity and magnetic properties of Dy substituted strontium titanate ceramics, Journal of the European Ceramic Society, 38, 605-611 (2018).
[87] S. R. Popuri, A. J. M. Scott, R. A. Downie, M. A. Hall, E. Suard, R. Decourt, M. Pollet, J.-W. G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies, The Royal Society of Chemistry Advances, 4, 33720-33723 (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw