系統識別號 U0026-2408201800174100
論文名稱(中文) 果蠅中飢餓後學習表現提升之探討
論文名稱(英文) Investigation of Fasting-dependent Learning in Drosophila melanogaster
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 106
學期 2
出版年 107
研究生(中文) 姚姿卉
研究生(英文) Tzu-Hui Yao
學號 S26051025
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 指導教授-姜學誠
中文關鍵字 食物限制  認知  AKT  蕈狀體  原腦前內側多巴胺神經叢 
英文關鍵字 Food restriction  Cognitive  AKT  Mushroom body  Dopaminergic protocerebral anterior medial neurons 
中文摘要 肥胖是導致慢性疾病的主要危險因子之一,進食限制在許多物種中被認為是一種有效降低疾病發生及促進健康的方法。然而,我們對於進食限制在認知與神經功能上的瞭解尚處於早期階段。我們在此利用懲罰式嗅覺訓練及共軛焦成像技術來研究進食限制在果蠅上的影響,我們發現在訓練前短暫的禁食可以提升年輕果蠅的學習表現,此現象是與蛋白質合成有關的,且須透過同時剝奪甜味與能量來誘發。降低protocerebral anterior medial (PAM)的多巴胺神經叢中PI3K/AKT訊號傳遞路徑可促成飢餓後學習的形成。阻斷PAM的多巴胺神經叢、ellipsoid body (EB)、mushroom body (MB) 神經元的胞吞作用會破壞飢餓後學習的形成。我們的研究揭示飢餓後學習的部分神經迴路以及PAM多巴胺神經叢的新作用。
英文摘要 Obesity is one of the major risk factors for chronic diseases. Food restriction is considered as a good way of reducing the onset of diseases and in promoting health among different species. However, our knowledge of food restriction in cognition and neuronal functions still in its infancy and remains to be established. Here, we used aversive olfactory conditioning and confocal imaging techniques to evaluate food restriction effects on the fruit fly Drosophila melanogaster. We showed that mild fasting before conditioning enhance learning performance in young flies and such enhancement is protein synthesis-dependent and required both sweet and energy deprivation. Reduced phosphoinositide-3-kinase (PI3K)/AKT signaling pathway in dopaminergic protocerebral anterior medial (PAM) cluster is accountable for this fasting-dependent learning. Blocking synaptic endocytosis in dopaminergic PAM neurons, ellipsoid body (EB), and mushroom body (MB)  neurons impedes the fasting-dependent learning formation. Our results reveal part of the circuitry of fasting-dependent learning and the new role of dopaminergic PAM neurons.
論文目次 中文摘要 I
Abstract III
Acknowledgement V
Abbreviation VII
Content IX
List of figures XI
Introduction 1
Material & Method 6
Result 10
Fasting enhances learning performance within a critical period 11
Starvation doesn’t affect odor and pain sensitivity 11
Short and Long-term deprivation of Sweet and energy can enhance learning 12
Fasting-dependent learning relies on protein synthesis 12
Fasting-dependent learning forms through PI3K signaling pathway in dopaminergic PAM neurons 13
Overexpression of the PI3K signaling pathway disrupt learning enhancement in starved flies 14
Fasting-dependent learning forms in the distinct subsets of PAM neurons 14
Loss of neuronal function impaired fasting-dependent learning 15
Dopaminergic PAM neurons and MB are in close proximity 16
Both VT45650 and R58E02 participate in fasting-dependent learning information transmission 16
Sensory information about fasting-dependent learning is also transmitted through the EB 17
The MB  lobe is essential for fasting-dependent learning formation 17
The MB112C and MB210B output neurons do not play a role in the modulation of fasting-dependent learning 18
Discussion 20
Conclusion 26
Reference 28
Figure 38
參考文獻 Anandacoomarasamy, A., Caterson, I., Sambrook, P., Fransen, M., & March, L. (2008). The impact of obesity on the musculoskeletal system. International journal of obesity, 32(2), 211.

Andretic, R., van Swinderen, B., & Greenspan, R. J. (2005). Dopaminergic modulation of arousal in Drosophila. Current Biology, 15(13), 1165-1175.

Aso, Y., Siwanowicz, I., Bräcker, L., Ito, K., Kitamoto, T., & Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. Current Biology, 20(16), 1445-1451.

Aso, Y., Hattori, D., Yu, Y., Johnston, R., Iyer, N., Ngo, T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H. & Rubin, G. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. Elife, 3, e04577.

Azanchi, R., Kaun, K., & Heberlein, U. (2013). Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. Proceedings of the National Academy of Sciences, 110 (52), 21153-21158.

Baliga, B. S., Pronczuk, A. W., & Munro, H. N. (1969). Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. The Journal of Biological Chemistry, 1969; 244: 4480–4489.

Barnes, A. S. (2011). The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal, 38(2):142–144.

Basen-Engquist, K., & Chang, M. (2010). Obesity and Cancer Risk: Recent Review and Evidence. Current Oncology Reports, 13(1), 71-76.

Beccuti, G., & Pannain, S. (2011). Sleep and obesity. Current Opinion in Clinical Nutrition & Metabolic Care, 14, 402–412.

de Belle, J. S., & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 263(5147), 692-695.

Berry, J., Cervantes-Sandoval, I., Nicholas, E., & Davis, R. (2012). Dopamine Is Required for Learning and Forgetting in Drosophila. Neuron, 74(3), 530-542.

Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.

Bruce-Keller, A., Umberger, G., McFall, R., & Mattson, M. (1999). Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Annals Of Neurology, 45(1), 8-15.

Burke, C., Huetteroth, W., Owald, D., Perisse, E., Krashes, M., & Das, G. et al. (2012). Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 492(7429), 433-437.

Busto, G., Cervantes-Sandoval, I., & Davis, R. (2010). Olfactory Learning in Drosophila. Physiology, 25(6), 338-346.

Cervantes-Sandoval, I., Martin-Pena, A., Berry, J. A., & Davis, R. L. (2013). System-Like Consolidation of Olfactory Memories in Drosophila. Journal of Neuroscience, 33(23), 9846-9854.

Claridge-Chang, A., Roorda, R. D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenböck, G. (2009). Writing Memories with Light-Addressable Reinforcement Circuitry. Cell, 139(5), 1022.

Cognigni, P., Felsenberg, J., & Waddell, S. (2018). Do the right thing: Neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology, 49, 51-58.

Cohen, E., Paulsson, J., Blinder, P., Burstyn-Cohen, T., Du, D., Estepa, G., Adame, A., Pham, H., Holzenberger, M., Kelly, J., Masliah, E. & Dillin, A. (2009). Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice. Cell, 139(6), 1157-1169.

Colman, R., Anderson, R., Johnson, S., Kastman, E., Kosmatka, K., Beasley, T., Allison, D., Cruzen, C., Simmons, H., Kemnitz, J. & Weindruch, R. (2009). Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys. Science, 325(5937), 201-204.

Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., & Anderson, R. M. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications, 5(1).

Cryer, P. E. (2012). Minireview: Glucagon in the Pathogenesis of Hypoglycemia and Hyperglycemia in Diabetes. Endocrinology, 153(3), 1039-1048.

Davis, R. L. (2004). Olfactory Learning. Neuron, 44(1), 31-48.

Campo, N. D., Chamberlain, S. R., Sahakian, B. J., & Robbins, T. W. (2011). The Roles of Dopamine and Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 69(12).

Dewar, A. D., Wystrach, A., Philippides, A., & Graham, P. (2017). Neural coding in the visual system of Drosophila melanogaster: How do small neural populations support visually guided behaviours? PLOS Computational Biology, 13(10).

Duffy, J. B. (2002). GAL4 system in Drosophila: A fly geneticist’s swiss army knife. Genesis, 34(1-2), 1-15.

Endo, Y., Mitsui, K., Motizuki, M., & Tsurugi, K. (1987). The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The Journal of biological chemistry. 262, 5908–5912.

Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., & Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems. Neuron, 57(3), 353-363.

Foltenyi, K., Andretic, R., Newport, J. W., & Greenspan, R. J. (2007). Neurohormonal and Neuromodulatory Control of Sleep in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology, 72(1), 565-571.

Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending Healthy Life Span--From Yeast to Humans. Science, 328(5976), 321-326.

Gao, X. J., Riabinina, O., Li, J., Potter, C. J., Clandinin, T. R., & Luo, L. (2015). A transcriptional reporter of intracellular Ca2+ in Drosophila. Nature neuroscience, 18(6), 917.

GBD 2015 Obesity Collaborators et al.. (2017). Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine, 377(1), 13-27.

Guven-Ozkan, T., & Davis, R. L. (2014). Functional neuroanatomy of Drosophila olfactory memory formation. Learning & Memory, 21(10), 519-526.

Haan, M. N. (2006). Therapy Insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimers disease. Nature Clinical Practice Neurology, 2(3), 159-166.

Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J., & Garrity, P. A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454(7201), 217-220.

Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, 4(4), 266-275.

Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/Akt Pathway. Cold Spring Harbor Perspectives in Biology, 4(9).

Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015). Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila. Current Biology, 25(6), 751-758.

Keleman, K., Vrontou, E., Krüttner, S., Yu, J. Y., Kurtovic-Kozaric, A., & Dickson, B. J. (2012). Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, 489(7414), 145-149.

Kopple, J. D., & Feroze, U. (2011). The effect of obesity on chronic kidney disease. Journal of Renal Nutrition, 21(1), 66–71.

Kotchen, T. A. (2010). Obesity-Related Hypertension: Epidemiology, Pathophysiology, and Clinical Management. American Journal of Hypertension, 23(11), 1170-1178.

Kovesdy, C. P., Furth, S. L., & Zoccali, C. (2017). Obesity and Kidney Disease: Hidden Consequences of the Epidemic. Canadian Journal of Kidney Health and Disease, 4, 205435811769866.

Kume, K. (2005). Dopamine Is a Regulator of Arousal in the Fruit Fly. Journal of Neuroscience, 25(32), 7377-7384.

Landayan, D., & Wolf, F. W. (2015). Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biomedical Journal, 38(6), 496-509.

Lin, S., Owald, D., Chandra, V., Talbot, C., Huetteroth, W., & Waddell, S. (2014). Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience, 17(11), 1536-1542.

Liu, C., Plaçais, P., Yamagata, N., Pfeiffer, B., Aso, Y., Friedrich, A., Siwanowicz, I., Rubin, G., Preat, T. & Tanimoto, H. (2012). A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 488(7412), 512-516.

Mao, Z. & Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3.

Martin, C. A., & Krantz, D. E. (2014). Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochemistry International, 73, 71-88.

Masse, N. Y., Turner, G. C., & Jefferis, G. S. (2009). Olfactory Information Processing in Drosophila. Current Biology, 19(16).

Mattison, J., Roth, G., Beasley, T., Tilmont, E., Handy, A., Herbert, R., Longo, D., Allison, D., Young, J., Bryant, M., Barnard, D., Ward, W., Qi, W., Ingram, D. & de Cabo, R. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318-321.

Mattison, J., Colman, R., Beasley, T., Allison, D., Kemnitz, J., Roth, G., Ingram, D., Weindruch, R., de Cabo, R. and Anderson, R. (2017). Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 8, 14063.

Mattson, M. P. (2003). Gene–Diet Interactions in Brain Aging and Neurodegenerative Disorders. Annals of Internal Medicine, 139(5_Part_2), 441.

Mazon, J. N., Mello, A. H., Ferreira, G. K., & Rezin, G. T. (2017). The impact of obesity on neurodegenerative diseases. Life Sciences, 182, 22-28.

Mhyre, T. R., Boyd, J. T., Hamill, R. W., & Maguire-Zeiss, K. A. (2012). Parkinson’s disease. Subcellular Biochemistry, 65, 389-455.

Molina, V., & Blanco, J. A. (2013). A Proposal for Reframing Schizophrenia Research. The Journal of Nervous and Mental Disease, 201(9), 744-752.

Narkiewicz, K. (2005). Obesity and hypertension—the issue is more complex than we thought. Nephrology Dialysis Transplantation, 21(2), 264-267.

Obrien, P. D., Hinder, L. M., Callaghan, B. C., & Feldman, E. L. (2017). Neurological consequences of obesity. The Lancet Neurology, 16(6), 465-477.

Owald, D., Felsenberg, J., Talbot, C., Das, G., Perisse, E., Huetteroth, W., & Waddell, S. (2015). Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila. Neuron, 86(2), 417-427.

Patel, N. V., Gordon, M. N., Connor, K. E., Good, R. A., Engelman, R. W., Mason, J., Morgan, D., Morgan, T., & Finch, C. E. (2005). Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiology of Aging, 26(7), 995-1000.

Pendleton, R. G., Rasheed, A., Sardina, T., Tully, T., & Hillman, R. (2002). Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behavior Genetics, 32, 89–94.

Perisse, E., Owald, D., Barnstedt, O., Talbot, C., Huetteroth, W., & Waddell, S. (2016). Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body. Neuron, 90(5), 1086-1099.

Poirier, P. (2006). Obesity and Cardiovascular Disease: Pathophysiology, Evaluation, and Effect of Weight Loss: An Update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease From the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918.

Pool, A., & Scott, K. (2014). Feeding regulation in Drosophila. Current Opinion in Neurobiology, 29, 57-63.

Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned Behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 71(3), 708-712.

Re, R. N. (2009). Obesity-related hypertension. The Ochsner Journal, 9(3):133-136.

Riemensperger, T., Völler, T., Stock, P., Buchner, E., & Fiala, A. (2005). Punishment Prediction by Dopaminergic Neurons in Drosophila. Current Biology, 15(21), 1953-1960.

Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K., Iche-Torres, M., Cassar, M., Strauss, R., Preat, T., Hirsh, J. & Birman, S. (2010). Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proceedings of the National Academy of Sciences, 108(2), 834-839.

Riemensperger, T., Issa, A., Pech, U., Coulom, H., Nguyễn, M., Cassar, M., Jacquet, M., Fiala, A. & Birman, S. (2013). A Single Dopamine Pathway Underlies Progressive Locomotor Deficits in a Drosophila Model of Parkinson Disease. Cell Reports, 5(4), 952-960.

Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209-217.

Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Völler, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E. & Fiala, A. (2006). Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Current Biology, 16(17), 1741-1747.

Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila. The Journal of Neuroscience, 23(33), 10495-10502.

Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., & Inoue, S. (1996). L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism, 45(11), 1368-1374.

Shimokawa, I., Higami, Y., Hubbard, G. B., Mcmahan, C. A., Masoro, E. J., & Yu, B. P. (1993). Diet and the Suitability of the Male Fischer 344 Rat as a Model for Aging Research. Journal of Gerontology, 48(1).

Shyu, W., Chiu, T., Chiang, M., Cheng, Y., Tsai, Y., Fu, T., Wu, T. & Wu, C. (2017). Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nature Communications, 8, 15230.

Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21, 127–148.

Strauss, R. (2002). The central complex and the genetic dissection of locomotor behaviour. Current Opinion in Neurobiology, 12(6), 633-638.

Tarver, J., Daley, D., & Sayal, K. (2014). Attention-deficit hyperactivity disorder (ADHD): An updated review of the essential facts. Child: Care, Health and Development, 40(6), 762-774.

Toth, C. (2014). Diabetes and neurodegeneration in the brain. Diabetes and the Nervous System Handbook of Clinical Neurology, 489-511.

Trannoy, S., Redt-Clouet, C., Dura, J., & Preat, T. (2011). Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila. Current Biology, 21(19), 1647-1653.

Tully, T., & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157(2), 263-277.

Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S., & Kume, K. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neuroscience, 15(11), 1516-1523.

Umegaki, H. (2012). Neurodegeneration in Diabetes Mellitus. Advances in Experimental Medicine and Biology Neurodegenerative Diseases, 258-265.

Van Der Klaauw, A., & Farooqi, I. (2015). The Hunger Genes: Pathways to Obesity. Cell, 161(1), 119-132.

Waddell, S. (2013). Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in Neurobiology, 23(3), 324-329.

Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R., & Hills, A. P. (2006). Musculoskeletal disorders associated with obesity: A biomechanical perspective. Obesity Reviews, 7(3), 239-250.

Williams, N. T. (2008). Medication administration through enteral feeding tubes. American Journal of Health-System Pharmacy, 65(24), 2347-2357.

Wu, M. N., Koh, K., Yue, Z., Joiner, W. J., & Sehgal, A. (2008). A Genetic Screen for Sleep and Circadian Mutants Reveals Mechanisms Underlying Regulation of Sleep in Drosophila. Sleep, 31(4), 465-472.

Yamagata, N., Ichinose, T., Aso, Y., Plaçais, P., Friedrich, A., Sima, R., Preat, T., Rubin, G. & Tanimoto, H. (2014). Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proceedings of the National Academy of Sciences, 112(2), 578-583.

Yamagata, N., Hiroi, M., Kondo, S., Abe, A., Tanimoto, H. (2016). Suppression of dopamine neurons mediates reward. PLOS Biology, 14, e1002586.

Yamazaki, D., Hiroi, M., Abe, T., Shimizu, K., Minami-Ohtsubo, M., Maeyama, Y., Horiuchi, J. & Tabata, T. (2018). Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Reports, 22(9), 2346-2358.

Zammit, C., Liddicoat, H., Moonsie, I., & Makker, H. (2010). Obesity and respiratory diseases. International Journal of General Medicine, 2010; 3: 335–343.
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。

  • 如您有疑問,請聯絡圖書館