進階搜尋


下載電子全文  
系統識別號 U0026-2408201800033900
論文名稱(中文) 開發新的訊號篩選方法,以及使用STAR探測器在 200 GeV 的質子質子對撞中利用J/psi + pi pi 末態來研究psi(2S)粒子
論文名稱(英文) A new multivariate method and study psi(2S) via J/psi +pi pi final state in pp collisions at 200 GeV at STAR
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 張峰瀚
研究生(英文) Feng-Han Chang
學號 L26054077
學位類別 碩士
語文別 英文
論文頁數 52頁
口試委員 指導教授-楊毅
口試委員-許瑞榮
口試委員-徐百嫻
中文關鍵字 STAR  MTD  multivariate method  J/psi  psi(2S) 
英文關鍵字 STAR  MTD  multivariate method  J/psi  psi(2S) 
學科別分類
中文摘要 STAR 實驗是位於美國布魯克海文國家實驗室(Brookhaven National Laboratory)的相對論性重離子對撞機(Relativistic Heavy Ion Collider) 中,最主要的高能核物理實驗之一。STAR 探測器在2013 年開始安裝了一個新的探測器- 渺子探測器(Muon Telescope Detector),並於2014 年全部安裝完成,因此可以提供我們能夠藉由雙渺子衰變研究Quarkonia 的物理。
在這篇論文中我們開發了一個新的訊號篩選方法- Distance Method, 讓我們從背景事件裡面篩選出訊號事件,並且在質心能量為200 GeV 的質子與質子對撞數據中藉由使用新的變數- G 提高訊號數除上背景數的比值來研究 (2S) 粒子衰變到J/psi+pi pi 末態
英文摘要 The Solenoid Tracker At RHIC (STAR) is one of the major high energy nuclear physics experiments in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2014, a new subsystem, Muon Telescope Detector (MTD), was completely installed in the STAR experiment. This provides us an excellent opportunity to study heavy quarkonia physics via the dimuon channel. In this thesis, we presented a new developed multivariate method called “Distance Method”
to distinguish signal candidates from large background events, and the study of psi(2S) via the J/psi+pi pi final state in the proton-proton collisions at sqrt(s) = 200 GeV by using a new variable called “G” to increase the signal to noise ratio.
論文目次 Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Theoretical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 The Standard Model of particle physics . . . . . . . . . . . . . . . . . . . 3
2.2 The J/psi, psi(2S) and X(3872) particles . . . . . . . . . . . . . . . . . . . . 4
2.3 Quark-Gluon Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 STAR experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 RHIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The STAR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 TPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 ToF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 MTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 New multivariate method: Distance Method . . . . . . . . . . . . . . . . . . . . 15
4.1 Basic idea of Distance Method . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Toy Monte Carlo study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 The G variable for J/psi + pi pi analysis . . . . . . . . . . . . . . . . . . . . . . . 22
6 The psi(2S) -> J/psi + pi pi analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1 Dimuon mass spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 The psi(2S) in the J/psi + pi pi decay mode . . . . . . . . . . . . . . . . . . . 38
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Appendix A Distance Method efficiency . . . . . . . . . . . . . . . . . . . . . . . 50
參考文獻 [1] K. A. Olive, P. D. Group et al., “Review of particle physics,” Chinese Physics C, vol. 38, no. 9, p. 090001, 2014.
[2] I. Lakomov, “Mesure de la production de J/psi en collisions p-Pb au LHC avec le spectromètre à muons d’ALICE,” Ph.D. dissertation, Paris 11, 2014.
[3] M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, R. Aben, O. AbouZeid, N. Abraham, H. Abramowicz et al., “Measurements of (2S) and X(3872)→ J/psi+ pi pi production in pp collisions at ps= 8 TeV with the ATLAS detector,” Journal of High Energy Physics, vol. 2017, no. 1, p. 117, 2017.
[4] B. Mohanty, “Exploring the QCD phase diagram through high energy nuclear collisions: an overview,” arXiv preprint arXiv:1308.3328, 2013.
[5] M. Anderson, J. Berkovitz, W. Betts, R. Bossingham, F. Bieser, R. Brown, M. Burks, M. C. de la Barca Sánchez, D. Cebra, M. Cherney et al., “The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2-3, pp. 659–678, 2003.
[6] B. Trzeciak, “J/psi and psi(2S) measurement in p+ p collisions sqrt(S) = 200 and 500 GeV with the STAR experiment,” in Journal of Physics: Conference Series, vol. 668, no. 1. IOP Publishing, 2016, p. 012093.
[7] N. Brambilla, M. Krämer, R. Mussa, A. Vairo, G. Bali, G. T. Bodwin, E. Braaten, E. Eichten, S. Eidelman, S. Godfrey et al., “Heavy quarkonium physics,” arXiv preprint hep-ph/0412158, 2004.
[8] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. A. Khalek, A. Abdelalim, O. Abdinov, R. Aben, B. Abi, M. Abolins et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B, vol. 716, no. 1, pp. 1–29, 2012.
[9] J.-J. Aubert, U. Becker, P. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. Rhoades et al., “Experimental observation of a heavy particle J,” Physical Review Letters, vol. 33, no. 23, p. 1404, 1974.
[10] J.-E. Augustin, A. M. Boyarski, M. Breidenbach, F. Bulos, J. Dakin, G. Feldman, G. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie et al., “Discovery of a Narrow Resonance in e+ e- Annihilation,” Physical Review Letters, vol. 33, no. 23, p. 1406, 1974.
[11] M. Krämer, “Quarkonium production at high-energy colliders,” arXiv preprint hep-ph/0106120, 2001.
[12] G. Abrams, D. Briggs, W. Chinowsky, C. Friedberg, G. Goldhaber, R. Hollebeek, J. Kadyk, A. Litke, B. Lulu, F. Pierre et al., “Discovery of a second narrow resonance in e+ e- annihilation,” Physical Review Letters, vol. 33, no. 24, p. 1453, 1974.
[13] S.-K. Choi, S. Olsen, K. Abe, T. Abe, I. Adachi, B. S. Ahn, H. Aihara, K. Akai, M. Akatsu, M. Akemoto et al., “Observation of a narrow charmoniumlike state in exclusive B→K+ pi pi J/pi decays,” Physical review letters, vol. 91, no. 26, p. 262001, 2003.
[14] L. Adamczyk, J. Adkins, G. Agakishiev, M. Aggarwal, Z. Ahammed, N. Ajitanand, I. Alekseev, D. Anderson, R. Aoyama, A. Aparin et al., “Energy dependence of J/psi production in Au+ Au collisions at sqrt(sNN)= 39, 62.4 and 200GeV,” Physics Letters B, vol. 771, pp. 13–20, 2017.
[15] F. Bergsma, C. Blyth, R. Brown, W. Dieffenbach, A. Etkin, K. Foley, P.-A. Giudici, W. Leonhardt, W. Love, J. Mills et al., “The STAR detector magnet subsystem,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2-3, pp. 633–639, 2003.
[16] B. Bonner, H. Chen, G. Eppley, F. Geurts, J. Lamas-Valverde, C. Li, W. Llope, T. Nussbaum, E. Platner, and J. Roberts, “A single Time-of-Flight tray based on multigap resistive plate chambers for the STAR experiment at RHIC,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 508, no. 1-2, pp. 181–184, 2003.
[17] M. Williams, “Particle identification using time of flight,” Journal of Physics G: Nuclear and Particle Physics, vol. 39, no. 12, p. 123001, 2012.
[18] L. Ruan, G. Lin, Z. Xu, K. Asselta, H. Chen, W. Christie, H. Crawford, J. Engelage, G. Eppley, T. Hallman
et al., “Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector,” Journal of Physics G: Nuclear and Particle Physics, vol. 36, no. 9, p. 095001, 2009.
[19] T. Huang, R. Ma, B. Huang, X. Huang, L. Ruan, T. Todoroki, Z. Xu, C. Yang, S. Yang, Q. Yang et al., “Muon identification with Muon Telescope Detector at the STAR experiment,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 833, pp. 88–93, 2016.
[20] M. Aguilar, G. Alberti, B. Alpat, A. Alvino, G. Ambrosi, K. Andeen, H. Anderhub, L. Arruda, P. Azzarello,
A. Bachlechner et al., “First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV,” Physical Review Letters, vol. 110, no. 14, p. 141102, 2013.
[21] ATLAS collaboration and others, “A neural network clustering algorithm for the ATLAS silicon pixel detector,” Journal of Instrumentation, vol. 9, no. 09, p. P09009, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw