進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201617131000
論文名稱(中文) P3HT/PMMA混摻主動層之溶液製程處理對有機高分子電晶體電特性之影響研究
論文名稱(英文) Effect of solution processed Poly(3-hexylthiophene)/Poly(methyl methacrylate)-blending active layer on the electrical characteristics of polymeric transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 陳政升
研究生(英文) Cheng-Sheng Chen
學號 L76034085
學位類別 碩士
語文別 中文
論文頁數 51頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
口試委員-王右武
中文關鍵字 有機薄膜電晶體  混摻半導體  電場調控  P3HT  拉曼光譜 
英文關鍵字 Organic thin-film transistors  polyblends  conjugated polymers  insulating polymers 
學科別分類
中文摘要 本論文將探討使用高分子半導體poly (3-hexylthiophene) (P3HT)混摻絕緣高分子poly (methyl methacrylate) (PMMA)為主動層之有機薄膜電晶體,並討論不同製程處理所造成的影響,主要探討分成兩部分,第一部分,對P3HT/PMMA混摻溶液進行不同方式的處理,對於所製作成電晶體之電特性的影響;第二部分,是將經過不同製程處理的混摻溶液做成元件後,觀察電場輔助成膜的影響,以及討論相關的物理機制,兩部分皆同時討論在不同量測環境下量測的結果。
第一部分,對P3HT / PMMA混摻溶液進行不同製程處理,並製作成元件,探討其電特性。發現當存放時間越久,元件電特性會越好,原因可能是因為P3HT分子的自組裝特性,使P3HT分子更佳良好所造成,並也從表面結構觀察到,存放時間越久,PMMA分子的聚集會越明顯,柱狀結構會明顯變大,並使P3HT分子的結構的越紮實,再加上與P3HT分子相比,水分子會較易進入PMMA分子,P3HT分子變不易受水氧所破壞,造成當溶液存放到一個月後,製作成元件,從ID-Time量測上可觀察到,ID會從原本衰減的情況變成上升的情況;而當P3HT / PMMA混摻溶液經過超音波震盪後,只需要存放到兩個禮拜,便會有一樣的現象,但從表面結構發現,PMMA分子聚集的情況並不像一個月那樣良好,推測是因為超音波震盪能使P3HT分子的自組裝的情況更為顯著,使結構更為均勻,缺陷相對降低,使水氣較不易進入。
第二部分,我們則討論電場輔助成膜的情況,並利用拉曼光譜去分析P3HT分子的共軛鏈長,發現在大氣操作的情況下,電場造成的影響較為顯著;並由拉曼相減光譜可觀察到,溶液存放時間對於結晶區並沒有太明顯的影響,而是對於非晶區的影響較大;而溶液存放時間也會改變電場對共軛鏈長的影響,原本加電場會使P3HT短共軛鏈長的分子增加,但在存放一個月之後,經電場操作後則是長共軛鏈長的分子增加;而超音波震盪對於結晶區則會有相當明顯的影響,一開始會因為超音波振盪造成解構較為不均勻,但加電場後,則是會使結晶區的結構比起未振盪的更加均勻。


英文摘要 This study investigates the correlations between the solution-processed poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) active layers from different pretreatment processes and the electrical characteristics of organic thin-film transistors (OTFTs) at different measuring environments. P3HT and PMMA are semiconducting and insulating polymers, respectively. The P3HT/PMMA active layers were fabricated on a PMMA buffer layer by spin-coating from blend solutions with various pretreatments, such as long-term storage and ultrasonication. Improved electrical characteristics of OTFTs with the P3HT/PMMA active layers from pretreated blend solutions were observed, especially those processed by ultrasonication. Topology was analyzed by atomic force microscopy, which showed that the pillar-like PMMA grow in pace with increasing storage time. Results indicated that the microstructure of P3HT in the active layer could be improved through pretreatments of blend solutions, which enhanced the charge transport of the active layer. In particular, using the blended active layers made with the blend solutions after more than one-month storage, the output current of the OTFTs show decay-free behavior even during the dynamic electrical measurements in ambient conditions. The improved electrical characteristics of OTFTs made with the P3HT/PMMA active layer from the solutions with pretreatments can be attributed to the increased effective conjugation length of P3HT in the crystalline region of the active layers. In summary, air-stable OTFTs based on solution-processed semiconducting/insulating polyblends were fabricated by pretreatments of the blend solutions.
論文目次 目錄
中文摘要…………………………………………………………………I
Extended Abstract……………………………………………………III
致謝………………………………………………………………………………………X
目錄……………………………………………………………………………………XII
表目錄…………………………………………………………………………………XⅤ
圖目錄………………………………………………………………………… XⅤI

第一章 簡介與理論基礎 1
1-1有機薄膜電晶體之導論 1
1-2有機薄膜電晶體之發展 2
1-3有機薄膜電晶體之元件結構與原理 3
1-4有機薄膜電晶體載子傳輸理論與特性公式 4
1-5研究動機與目的 7
第二章 實驗方法與元件製備 11
2-1實驗材料 11
2-2實驗方法 11
2-2-1基板製備 11
2-2-2基板清洗 12
2-2-3高分子溶液的配製 12
2-2-4薄膜電晶體元件製程 14
2-3實驗儀器 14
第三章P3HT/PMMA混摻物對薄膜電晶體電特性的研究 20
3-1前言 20
3-2實驗方法 22
3-3混摻薄膜電晶體之電特性討論 22
3-3-1混摻溶液存放時間對元件電特性之影響 22
3-3-2混摻溶液進行超音波震盪對元件電特性之影響 23
3-3-3不同量測環境對元件電特性之比較 23
3-3-4水平電場調控成膜的討論 24
3-4混摻薄膜電晶體之吸收光譜分析 25
3-5混摻薄膜電晶體之拉曼光譜分析 26
3-5-1二維拉曼光譜分析 26
3-5-2相減拉曼光譜分析 27
3-6混摻薄膜電晶體之AFM分析 28
第四章 總結與未來展望 47
參考文獻 49
參考文獻 [1] J. E .Lilienfeld, “Device for controlling electric current”, US.Patent 1,900,018. Field 1928.Granted (1933)

[2] A. G. MacDiarmid, A. J. Epstein, “The concept of secondary doping as applied to polyaniline”, Synth. Met., 65, 103, (1994)

[3] M. A. Green, K.Emery, Y. Hishikawa, W. Warta, "Solar cell
efficiency tables (version 38)", Prog Photovoltaics., 19, 5, 565, (2011)

[4] M. Sessolo, H. Bolink, “Hybrid organic–inorganic light-emitting diodes”, Adv. Mater., 23, 1829–1845, (2011)

[5] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” , J. Appl. Phys., 54, 3255, (1983)

[6] F. Garnier, “All-polymer field-effect transistor realized by printing techniques”, Science., 16, 1684-1686, (1994)

[7] S. L. Wright, L. F. Palmateer, H. Klauk, T. N. Jackson, "Amorphous SiGe:H black matrix material for active matrix liquid crystal displays", 38th Electronic Materials Conference Digest., 71, (1996)

[8] D. J. Mascaro, "Organic thin-film transistors: A review of recent advances", IEEE Trans. Electron Devices., 45, (2001)

[9] O. D. Jurchescu, M. Popinciuc, B. J. van Wees, T. T. M. Palstra, “Interface-Controlled, High-Mobility Organic Transistors”, Adv. Mater., 19, 688, (2007)

[10] H. Jiang, H. Zhao, K. K. Zhang, X. Chen, C. Kloc, W. Hu, “High-performance organic single-crystal field-effect transistors of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory devices”, Adv. Mater., 23, 5075–5080, (2011)


[11] A. Miller, E. Abrahams, “Impurity conduction at low concentrations”, Phys. Rev., 120, 745-755, (1956)

[12] D. A. Neamen, “Semiconductor physics and devices basic principles 3rd edition”, (2003)

[13] A. Babel, S. A. Jenekhe, “Field-effect mobility of charge carriers in blend of regioregularpoly(3-alkylthiophene)s”, J. Phys. Chem., 107, 1749-1754, (2003)

[14] A. Babel, S. A. Jenekhe, “Charge carrier mobility in blends of poly(9,9-dioctylfluorene)andpoly(3-hexylthiophene)”, Macromolecules, 36, 7759-7764, (2003)

[15] C. Kilwon, “Organic thin-film transistors based on polythiophene
nanowires embedded in insulating polymer”, Adv. Matter., 21, 1349-1353, (2009)

[16] F. C. Wu, H. L. Cheng, Y. T. Chen, M. F. Janga, W. Y. Chouab, “Polymer bilayer films with semi-interpenetrating semiconducting/insulating microstructure for field-effect transistor applications”, Soft. Matter., 7, 11103-11110, (2011)

[17] Y. J.Lee,S. H. Kim, H. Yang, M. Jang, S. S. Hwang, H. S. Lee,
K. Y. Baek, “Vertical conducting nanodomains self-assembled from poly(3-hexyl thiophene)-based diblock copolymer thin films”, J Phys. Chem., 115, 4228–4234, (2011)

[18] A. Babel, S. A. Jenekhe, “Morphology and field-effect mobility of charge carriers in binary blends of poly(3-hexylthiophene) with poly[2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene] and polystyrene”, Macromolecules., 37, 9835-9840, (2004)


[19] M. Chang, J. Lee, Ping-Hsun Chu, D. Choi, B. Park, E. Reichmanis, “Anisotropic Assembly of Conjugated Polymer Nanocrystallites forEnhanced Charge Transport”, ACS Appl. Mater. Interfaces, 6 (23), 21544, (2014)

[20] Se Hyun Kim, Sooji Nam, Jaeyoung Jang, Kipyo Hong,
Chanwoo Yang et al., “Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors”, J. Appl. Phys. 105, 104509 , (2009)

[21] Horng-Long Cheng, Jr-Wei Lin, Ming-Feng Jang, Fu-Chiao Wu, Wei-Yang Chou, Ming-Hua Chang, Ching-Hsun Chao, “Long-Term Operations of Polymeric Thin-Film Transistors: Electric-Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene)”, Macromolecules , 42, 8251–8259, (2009)

[22] G. Louarn, “Raman spectroscopic studies of regioregular
poly(3-alkylthiophenes)”,J. Phys. Chem, 100, 12532, (1996)

[23] S. Lefrant, “Structural properties of some conducting polymers and
carbon nanotubes investigated by SERS sprctroscopy”, Synth. Met., 100, 13, (1999)

[24] M. Baibarac, “SERS spectra of poly(3-alkylthiophenes) in oxidized and unoxidized states”, J. Raman Spectrosc., 29, 825, (1998)

[25] G. Zerbi, “Thermochromism in polyalkylthiophenes: molecular aspects from vibrational spectroscopy”, J. Chem.Phys., 97, 4646, (1991)

[26] Fu-Chiao Wu, Horng-Long Cheng, Yu-Ta Chen, Ming-Feng Jang, Wei-Yang Chou, “Polymer bilayer films with semi-interpenetrating semiconducting/insulatingmicrostructure for field-effect transistor applications”, Soft Matter, 7, 11106, (2006)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw