進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201615255600
論文名稱(中文) 黃石國家公園熱泉中錐狀疊層石微生物群落型態與光合自養微生物之分類及碳、氮吸收富集模式研究
論文名稱(英文) Classification and carbon and nitrogen uptake patterns of autotrophs in conical stromatolite-forming microbial community from Yellowstone National Park hot spring
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 陳立豪
研究生(英文) Li-Hao Chen
學號 L46031031
學位類別 碩士
語文別 中文
論文頁數 180頁
口試委員 指導教授-梁碧清
口試委員-張詠斌
口試委員-陳逸民
中文關鍵字 疊層石  絲狀藍綠菌  二次離子質譜儀  碳與氮的吸收和儲存 
英文關鍵字 Stromatolites  filamentous cyanobacteria  nano-scale secondary ion mass spectrometer  carbon uptake and storage  nitrogen uptake and storage 
學科別分類
中文摘要 從太古元與遠古元地層中發現當時疊層石廣泛的分佈全球,在早期地球扮演一個很重要的角色。追溯到34.6億年前所發現的疊層石為錐狀疊層石,記錄了近乎地球最早期的生物活動。
疊層石是宏觀上從某一點或有限的表面開始增生並且逐漸增大並聚集石化的沉澱物生成構造,記錄了整個地球沉積歷史中微生物與沉積物之間的交互作用。錐狀疊層石基本上是由藍綠菌虜獲沉積顆粒分層增生後產生的生化結構,後經成岩作用保存而成的一種化石。
利用現生於黃石國家公園熱溫泉中所發現形態非常相似於古代之錐狀疊層石,經由螢光顯微鏡、穿透電子顯微鏡(TEM)去辨別實驗室內培養及野外的樣品的形態分類,結合分子生物學的基因序列比對,我們比較並鑑定光合自養生物的種類。並運用高解析度二次離子質譜(Nano-SIMS)深入分析光合自養微生物的碳、氮吸收模式及動態,並專注於藍綠菌碳、氮的富集。通過結合形態、分子生物學鑑種,力圖理解現生疊層石的微生物群落中不同光合自養生物的代謝及競爭對形成錐狀疊層石的影響。。
我們發現藍綠菌碳吸收和儲存不同的模式屬於不同的群組(Subsection I,II和III),並確定不具有異型細胞的絲狀藍綠菌(Subsection III)是構成錐形結構的主體,而這些藍綠菌承載了獨特的子胞器結構“cyanophycin”,它可以累積並存儲大量的碳和氮。當錐狀疊層石形成時,碳跟氮的積累和儲存的獨特富集現象可能對碳、氮的競爭提供了很大的優勢。
英文摘要 Stromatolites, especially conical stromatolites, play an important role in transforming early Earth, are layered bio-chemical accretionary structures by the trapping, binding and cementation of sedimentary grains by microorganisms, especially cyanobacteria. Modern cyanobacterial mat from the hot springs of Yellowstone National Park (YNP) grow into macroscopic structure similar to an ancient analogs. Using high resolution imaging (TEM) and isotopic mapping (Nano-scale SIMS), we probed the carbon and nitrogen uptake patterns and dynamics in conical-stromatolite forming microbial community from the YNP hot spring, and focused on the characterization of carbon and nitrogen enrichment in autotrophs, especially cyanobacteria. We detected distinct patterns of carbon uptake and storage for cyanobacteria which belong to different subsection (I, II and III), and identified filamentous non-heterocystous cyanobacteria (subsection III) to be the main constitute of cone structure. These cyanobacteria bear unique sub-organelle structure ‘cyanophycin’, which can accumulate and storage large amount of carbon and nitrogen. This ability of carbon and nitrogen accumulation and storage may provide great advantages for competition of nutrients during the formation of conical stromatolites.
論文目次 摘要 I
Extended Abstract II
誌謝 VI
目錄 VIII
圖目錄 XII
表目錄 XV
第一章、緒論 1
1-1、前言 1
1-2、研究動機 1
1-3、研究目的 2
1-4、原核生物 2
1-4-1、細菌 3
1-4-2、古菌 4
1-4-3、光合細菌 5
1-5、儀器原理簡介 5
1-5-1、光學顯微鏡(OM) 5
1-5-2、螢光顯微鏡 7
1-5-3、穿透式電子顯微鏡(TEM) 8
1-5-4、奈米尺度之二次離子質譜儀(Nano-SIMS) 10
1-6、基因定序原理簡介 12
1-6-1、DNA的萃取純化 13
1-6-2、聚合酶連鎖反應(PCR) 14
1-6-3、DNA序列定序 17
1-7、免疫標定 20
第二章、文獻回顧 22
2-1、疊層石 22
2-2、生物膜與生物蓆墊 27
2-3、藍綠菌 29
2-3-1、傳統分類法 35
2-3-2、Cyanophycin 36
第三章、材料與研究方法 37
3-1、儀器參數設定 37
3-1-1、螢光顯微鏡 37
3-1-2、穿透式電子顯微鏡(TEM) 38
3-1-3、奈米尺度之二次離子質譜儀(Nano-SIMS) 38
3-2、培養實驗 39
3-2-1、菌種來源 39
3-2-2、培養液配置 40
3-2-3、培養條件 41
3-3、基因定序 42
3-4、免疫金複合物標定 46
3-5、同位素標定 47
第四章、結果與討論 50
4-1、型態觀察與分類 50
4-1-1、光學顯微鏡與螢光顯微鏡 50
4-1-2、穿透式電子顯微鏡(TEM) 56
4-1-3、免疫金標定 68
4-2、基因定序之結果 70
4-2-1、實驗室內培養菌株之基因定序與結果 71
4-2-2、野外樣品之基因定序與鑑別 77
4-3、元素吸收模式 80
4-3-1、碳元素 81
4-3-2、氮元素及其他元素 83
4-4、碳、氮富集模式 84
4-4-1、碳元素 85
4-4-2、氮元素 88
第五章、結論與未來展望 90
參考文獻 92
附錄一:培養液之配方 101
附錄二:Nano-SIMS之參數設定 102
附錄三:ImageJ之使用 103
附錄四:光學顯微鏡與螢光顯微鏡之示意圖比較 105
附錄五:抽取核酸之實驗步驟 108
附錄六:實驗室樣品之基因序列 109
附錄七:與樣品比對較相似之NCBI其他樣品資料 137
附錄八:野外樣品之基因序列 143
附錄九:碳之奈米尺度之二次離子質譜儀原始數據 171
附錄十:氮之奈米尺度之二次離子質譜儀原始數據 178
參考文獻 1.Adhikary SP, Weckesser J, Jürgens UJ, Golecki JR, Borowiak D (1986) Isolation and chemical characterization of the sheath from the cyanobacterium chroococcus minutus SAG B. 41.79. Microbiology Society Journals, 132, 2595-2599.
2.Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158, 198-227.
3.Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 715-718.
4.Bang C, Schmitz RA (2015) Archaea associated with human surfaces: not to be underestimated. FEMS Microbiology Reviews, 39 (5), 631-48.
5.Bartley JK, Kah LC, Frank TD, Lyons TW (2015) Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology, 13, 15-32.
6.Bauman RW, Tizard IR,Elizabeth MM (2006). Microbiology. San Francisco: Pearson Benjamin Cummings. ISBN 0-8053-7693-3.
7.Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature, 427, 117-120.
8.Berelson WM, Corsetti FA, Pepe-Ranney C, Hammond DE, Beaumont W, Spear JR (2011) Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation. Geobiology, 9, 411-424.
9.Berg JM, Tymoczko JL, Stryer L (2002). Molecular Cell Biology (5th ed.). WH Freeman. ISBN 0-7167-4955-6.
10.Beukes NJ, Lowe DR (1989) Environmental controls on diverse stromatolite morphologies in the 3000 Myr Pongola Supergroup, South Africa. Sedimentology, 36, 383-397.
11.Boomer SM, Noll KL, Geesey GG, Dutton BE (2009) Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Applied and Environment Microbiology, 75, 2464-2475.
12.Bosak T, Bush JWM, Flynn MR, Liang BQ, Ono S, Petroff APP, Sim MS (2010) Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology, 8, 45-55.
13.Bosak T, Liang BQ, Sim MS, Petroff APP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proceedings of the National Academy of Sciences, 106, 27, 10939-10943.
14.Bosak T, Liang BQ, Wu TD, Templer SP, Evans A, Vali H, Guerquin-Kern JL, Klepac-Ceraj V, Sim MS, Mui J (2012) Cyanobacterial diversity and activity in modern conical microbialites. Geobiology, 10, 384-401.
15.Buick R (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites insulphate-deficient Archaean lakes. Science, 255, 74-77.
16.CAMECA (2006) https://microscopie.univ-rennes1.fr/sites/microscopie. univ-rennes1 .fr/files/field/image/publiNano/Instrumentation.pdf
17.Castanholz RW (1988) Culturing methods for cyanobacteria. Methods in Enzymology, 167, 68-93.
18.Chorus I, Bartram J (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. ISBN 0-419-23930-8.
19.Copeland JJ(1936) Yellowstone thermal myxophyceae. Annals of the New York Academy of Sciences, 36, 1, 4-223.
20.Couradeau E, Benzerara K, Gerard E, Esteve I, Moreira D, Tavera R, Lopez-Garcıa P (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences, 10, 5255-5266.
21.De los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 59 (2), 386-95.
22.DeLong EF (1998) Everything in moderation: archaea as 'non-extremophiles'. Current Opinion in Genetics & Development 8 (6): 649-54.
23.Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity water. Nature, 324, 55-58.
24.Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219, 385-386.
25.Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proceedings of the National Academy of Sciences, 103, 15759-15764.
26.Farquhar J, Zerkle A, Bekker A (2011) Geological constraints on the origin of oxygenicphotosynthesis. Photosynthesis Research, 107, 11-36.
27.Ferris MJ, Kuhl M, Wieland A, Ward DM (2003) Cyanobacterial ecotypes in different optical microenvironments of a 68° C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation. Applied and Environment Microbiology, 69, 2893-2898.
28.Foster JS, Green SJ, Ahrendt SR, Golubic S, Reid RP, Hetherington KL, Bebout L (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. International Society for Microbial Ecology, 3, 573-587.
29.Grey K (1980) Small conical stromatolites from the Archean near Kanowna, Western Australia. Annual Report Geological Survey of Western Australia, 90-94.
30.Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313-358.
31.Innis MA, Myambo KB, Gelfand DH, Brow MA (1988). DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Biochemistry, 85, 9436-9440.
32.Jones B, Renaut RW, Rosen MR (1998) Microbial biofacies in hot-spring sinters; a model based on Ohaaki Pool, North Island, New Zealand. Journal of Sedimentary Research, 68, 413-434.
33.Jones B, Renaut RW, Rosen MR, Ansdell KM (2002) Coniform Stromatolites from Geothermal Systems, North Island, New Zealand. PALAIOS, 17, 1, 84-103
34.Konhauser K, Lalonde S, Planavsky N, Pecoits E, Lyons T, Mojzsis S, Rouxel O, Fralick P, Barley M, Kump L. (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 478, 369-373.
35.Konneke M; Bernhard AE; de la Torre JR; Walker CB; Waterbury JB; Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543-6.
36.Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: Aclimate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences, 102, 11131-11136.
37.Lacap DC, Barraquio W, Pointing SB. (2007) Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance. Environmental Microbiology, 9, 3065-3076.
38.Lacap DC, Smith GJD, Warren-Rhodes K, Pointing SB. (2005). Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines. Canadian Journal of Microbiology, 51, 583-589.
39.Lau E, Nash CZ, Vogler DR, Cullings KW (2005) Molecular diversity of cyanobacteria inhabiting coniform structures and surrounding mat in a Yellowstone hot spring. Astrobiology, 5, 83-92.
40.Liang BQ, Wu TD, Sun HJ, Vali H, Guerquin-Kern JL, Wang CH, Bosak T (2014) Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous cyanobacteria from coniform mats. PLoS ONE, 9, 2.
41.McGregor GB, Rasmussen JP (2008) Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiology Ecology, 63, 23-35.
42.Morita E, Kuroiwa H, Kuroiwa T, Nozaki H (1997) High localization of Ribulose-1,5-bisphosphate carboxylase/oxygenase in the pyrenoids of Chlamydomanas reinhardtii (Chorophyta), as revealed by cryofixation and immunogold electron microscopy. Journal of Phycology, 33, 68-72.
43.Murat D, Byrne M, Komeili A (2010) Cell Biology of Prokaryotic Organelles. Cold Spring Harbor Perspectives in Biology, 58, 460-4.
44.Nealson KH (1999) Post-Viking microbiology: new approaches, new data, new insights. Origins of Life and Evolution of Biospheres, 29, 73-93.
45.Noel K (2005) Bergey's Manual of Systematic Bacteriology. US: Springer. ISBN 978-0-387-24143-2.
46.Petroff APP, Bosak T, Liang BQ, Rothman D, Sim MS (2008) Aggregation Phenomena in Cyanobacterial, Stromatolite Analogues.
47.Petroff APP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical stromatolites. Proceedings of the National Academy of Sciences, 107, 9956-9961.
48.Petroff APP, Wu TD, Liang BQ, Muie J, Guerquin-Kern JL, Vali H, Rothman DH, Bosak T (2011) Reaction-diffusion model of nutrient uptake in a biofilm: Theory and experiment. Journal of Theoretical Biology, 289, 90-95.
49.Playford PE, Cockbain AE (1976) Chapter 8.2 modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. Developments in Sedimentology, 20, 389-411. ISBN: 978-0-444-63529-7
50.Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455, 1101-1104.
51.Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies, 33, 1-18.
52.Reid RP, Visscher PT, Decho AW, Stolz JF, Beboutk BM, C. Dupraz, I. Macintyre G, Paer HW, Pinckney JL, Prufert-Beboutk L, Steppe TF, DesMaraisk DJ (2000) The role ofmicrobes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989-992.
53.Schimel J (2004) Playing scales in the methane cycle: from microbial ecology to the globe. Proceedings of the National Academy of Sciences, 101, 12400-12401.
54.Schopf JW (2012) The fossil record of cyanobacteria, in Brian A. Whitton (Ed.) Ecology of Cyanobacteria II: Their Diversity in Space and Time. ISBN 9789400738553.
55.Schopf JW, Oehler DZ (1976) How Old Are the Eukaryotes? Science, 193, 47-49.
56.Semikhatov MA, Gebelein CD, Cloud PE, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis-progress and problems. Canadian Journal of Earth Sciences, 16, 992-1015.
57.Sim MS, Liang BQ, Petroff APP, Evans A, Klepac-Ceraj V, Flannery DT, Walter MR, Bosak T (2012) Oxygen-dependent morphogenesis of modern clumped photosynthetic mats and implications for the archean stromatolite record. Geosciences, 2, 235-259.
58.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-9.
59.Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences, 103, 14, 5442-5447.
60.Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, 5, 316-23.
61.Walter MR, Bauld J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of yellowstone national park. Science, 178, 402−405.
62.Ward DM, Bateson MM, Ferris MJ, Kuhl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philosophical Transactions of the Royal Society of London. Proceedings of the Royal Society B: Biological Sciences, 361, 1997-2008.
63.Winsborough BM, Golubić S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. Journal of Phycology, 23, 195–201.
64.Wyman M, Gregory RPF, Carr NG (1985) Novel role for phycoerythrin in a marine cyanobacterium, synechococcus strain DC2. Science 230, 4727, 818-820.
65.Zillig W (1991) Comparative biochemistry of Archaea and Bacteria. Current Opinion in Genetics & Development, 1, 544-51.
66.何國榮, (2011). 科學月刊6月號 498期.
67.林宮玄, (2014). 顯微鏡變顯「奈」鏡顯了! 科學月刊12月號540期.
68.潘扶民, (1991). 科儀新知,四極質譜儀與表面科學,第 64 期,33-45 .
69.羅聖全, (2004). 研發奈米科技的基本工具之一電子顯微鏡介紹TEM, 工業材料雜誌.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw