參考文獻 |
1. Cornelius T. Leondes, MEMS/NEMS Handbook Techniques and Applications, Springer US,2006.
2. Cerrina F and Marrian C 1996 MRS Bull. 21 56.
3. H.Choi and S. Park, Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition, J. Am. Chem. Soc., vol. 126, pp.6248-6249, 2004.
4. Gyu-Chul Yi, Semiconductor Nanostructures for Optoelectronic Devices, Springer-Verlag Berlin Heidelberg.
5. J. Sarkar, G.G Khan and AbasuMallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template, Bull. Mater. Sci., vol. 30, pp.271-290, 2007.
6. Z.Wang, M.Brust, Fabrication of nanostructure via self-assembly of nanowires within the AAO template, Nanoscale Res Lett, vol. 2, pp. 34-39, 2007.
7. T.Gao, G.Meng, Y.Wang, S.Sun and L.Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter, vol.14, pp.355-363, 2002.
8. T.Chowdhury, D.P. Casey, J.F. Rohan, Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates, Electrochemistry Communications, vol.11, pp.1203-1206, 2009.
9. C. Li, J.Yang, W.Tsai, C.Lin, T. Chang, M. Sone, High aspect ratio micro-hole filling employing emulsified supercritical CO2 electrolytes, J. of Supercritical Fluids, vol.109, pp.61–66, 2016.
10. S. Chung, H.Huang , S.Pan , W.Tsai , P. Lee , C.Yang , M. Wu, Material characterization and corrosion performance of nickel electroplated in supercritical CO2 fluid, Corrosion Science, vol. 50,pp. 2614-2619, 2008.
11. G.E.J.Poinern, N. Ali, and D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials, vol. 4, pp.487-526, 2011.
12. H.Masuda, K.Nishio,M.Adachi and D.J.Lockwood, Self-organized Nanoscale Materials, (2006), Springer Science+Business Media, Inc.
13. J.Qin, J.Nogues, M.Mikhaylova, A.Roig, J.S.Munoz and M.Muhammed, Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in anodized alumina templates, Chem. Mater., vol.17 ,pp.1829-1834, 2005.
14. J. Li, J.Jia, X.Liang, X.Liu, J.Wang, Q.Xue, Z. Li, J.S.Tse, Z.Zhang, and S. B. Zhang, Spontaneous Assembly of perfectly ordered identical size nanocluster arrays. Phys. Rev. Lett., vol.88, pp.066101:1-066101:4, 2002.
15. S.Ju, A. Facchetti., Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C Zhou, T. J. Marks and D. B. James, Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol., vol.2, pp.378 – 384, 2007.
16. M. Karlson, Nano-Porous Aluminia, a Potential Bone Implant Coating. Comprehensive Summaries of Uppsala Dissertations,The Faculty Of Science And Technology, Acta Universitatis Upsaliensis, Kiruna ,997, 2004.
17. L.G. Parkinson, N.L.Giles, K.F. Adcroft, M.W.Fear, F.M. Wood, and G.E.Poinern. Tissue Engineering Part A, vol.15, pp.3753-3763, 2009.
18. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, Z.T. Jiang, Nanoengineering a biocompatible inorganic scaffold for skin wound healing, J. BioMed. Nanotech, vol.6, pp. 497-510, 2010.
19. O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. ,vol. 72, pp. 1173-1175, 1998.
20. T. P. Hoar and J. Yahalom, The initiation of pores in anodic oxide films formed on aluminium in acid solutions, J. Electrochem. Soc., vol.110, pp. 614-621, 1963.
21. O'Sullivan, J.P. and Wood, G.C., The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum , Proc. Roy. Soc. Lond. A, vol. 317,pp. 511-543, 1970.
22. A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic aluminaJ. Appl. Phys., vol.84, pp.6023-6026, 1998.
23. F.Li, L.Zhang, and R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide ,Chem. Mater., vol. 10, pp. 2470-2480, 1998.
24. Grzegorz D. Sulka, Nanostructured Materials in Electrochemistry,(2008), Wiley-VCH Verlag GmbH & Co. KGaA.
25. A. Belwalkar, E. Grasing, W. V.Geertruyden, Z. Huang, and W.Z. Misiolek, Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes, J Memb Sci. ,vol.319, pp.192-198, 2008.
26. M. Ghorbani , F. Nasirpouri , A. Iraji zad, A. Saedi, On the growth sequence of highly ordered nanoporous anodic aluminium oxide, Materials and Design, vol.27, pp.983-988 ,2006.
27. J.Zhang, J.E. Kielbasa, D. L. Carroll, Controllable fabrication of porous alumina templates for nanostructures synthesis, Materials Chemistry and Physics , vol. 122, pp. 295-300, 2010.
28. I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi and D. Erts, Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages, Materials Science and Engineering , vol. 23, pp.012-025 ,2011.
29. Terry T. Xu, Richard D. Piner, and Rodney S. Ruoff, An Improved Method To Strip Aluminum from Porous Anodic Alumina Films, Langmuir, vol.19, pp.1443–1445, 2003.
30. J. Cui, Y.Wu, Y.Wang, H.Zheng, G.Xu, X.Zhang, A facile and efficient approach for pore-opening detection of anodic aluminum oxide membrane, Applied Surface Scienc, vol. 258, pp.5305-5311, 2012.
31. N. Itoh , K. Kato , T. Tsuji , M. Hongo, Preparation of a tubular anodic aluminum oxide membrane, Journal of Membrane Science , vol.117,pp.189-196, 1996.
32. L.Padrela, M. A. Rodrigues , S. P. Velaga , A.C. Fernandes , H. A. Matos , E.G.d.Azevedo, Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process, J. of Supercritical Fluids, vol.53, pp.156–164, 2010.
33. 談駿嵩,超臨界流體的應用,科學發展, 第359期, 2002年.
34. S.Kaneshima, O.Shibata, M.Nakamura, Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons , Bulletin of the Chemical Society of Japan, vol.52, pp.42-44, 1979.
35. Y.Einaga, Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers, Polymer Journal, vol. 39 ,pp.1082-1083, 2007.
36. C.Wu , J.Huang , Y.Wen, S.Wen, Y.Shen, M.Yeh, Preparation of TiO2 nanoparticles by supercritical carbon dioxide, Materials Letters, vol.62 ,pp.1923-1926, 2008.
37. H. Ohde, F.Hunt, and C. Wai, Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion, Chem. Mater. ,vol.13, pp.4130-4135, 2001.
38. R. G. Zielinski, S. R. Kline, E. W. Kaler, and N. Rosov, A Small-Angle Neutron Scattering Study of Water in Carbon Dioxide Microemulsions, Langmuir, vol.13, pp. 3934-3937 ,1997.
39. E.Reverchon, G.Caputo , S.Correra , P.Cesti, Synthesis of titanium hydroxide nanoparticles in supercritical carbon dioxide on the pilot scale, J. of Supercritical Fluids ,vol.26, pp.253-261, 2003.
40. L. Zhou, S.Wang, H.Ma, S.Ma, D.Xu, Y.Guo, Size-controlled synthesis of copper nanoparticles in supercritical water, chemical engineering research and design ,vol. 98, pp.36-43, 2015.
41. X.Ye, Y.Lin, C.Wang, and C.Wai, Supercritical fluid fabrication of metal nanowires and nanorods template by multiwalled carbon nanotubes, Adv. Mater, vol.15, pp.316-319, 2003.
42. S.Piazza, C.Sunseri, R. Inguanta, Influence of the electrical parameters on the fabrication of copper nanowires into anodic alumina templates, Applied Surface Science, vol. 255,pp. 8816-8823, 2009.
43. G. Yue, G.Meng , Q.Xu, B.Chen, M.Fang, Manipulation of crystalline orientation and optical absorption of Cu nanowire arrays embedded in anodic aluminum oxide templates, Materials Lettes, vol. 63, pp. 998-1000 ,2009.
44. S.Kumar, D.Saini , G. S.Lotey , N.K. Verma, Electrochemical synthesis of copper nanowires in anodic alumina membrane and their impedance analysis, Superlattices and Microstructures ,vol.50,pp. 698-702, 2011.
45. N.Shinoda, T. Shimizu, T. Chang, A.Shibata, M.Sone, Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles, Microelectronic Engineering, vol. 97,pp. 126-129, 2012.
46. N.Shinoda, T.Shimizu, T.Chang, A.Shibata, M.Sone, Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles, Thin Solid Films, vol.529,pp. 29-33, 2013.
47. 楊竣傑,以乳化超臨界二氧化碳流體進行高深寬比奈米孔洞填充之研究,2015.
48. H.Chuang, G.Hong, J.Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing , vol.45, pp.17-26, 2016.
49. W.Tsai, S.Chung, Electrodeposition of high phosphorus Ni–P alloys in emulsified supercritical CO2 baths, J. of Supercritical Fluids, vol.95, pp. 292-297, 2014.
50. K.Itaya, S. Sugawara, K.Arai and S.Saito, Properties of anodic aluminum oxide films as membrane, Journal of Chemical Engineering of Japan, vol. 17, pp.514-520, 1984.
51. J. P. O' Sullivan, J. A. Hockey and G. C. Wood, Infra-Red Spectroscopic Study of Anodic Alumina Films, Trans. Faraday Soc., vol. 65, pp. 535-541,1969.
52. Z.Su and W.Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Adv. Mater., vol.20, pp.3663–3667, 2008.
53. J. Cerezo, P. Taheri, I. Vandendael, R. Posner , K. Lill , J.H.W. de Wit , J.M.C.Mol, H. Terryn, Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy, Surface & Coatings Technology, vol.254, pp. 277-283, 2014.
54. M.E. Mata-Zamora and J.M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, REVISTA MEXICANA DE FI´SICA , vol.51, pp.502-509, 2005.
55. G.Xiong, J.W. Elam, H.Feng,|C.Y. Han, H.Wang, L.E. Iton, L.A. Curtiss, M.J. Pellin, M.Kung,|H. Kung, and P.C. Stair, Effect of Atomic Layer Deposition Coatings on the Surface Structure of Anodic Aluminum Oxide Membranes, J. Phys. Chem. B, vol.109,pp. 14059-14063, 2005.
56. P.P. Mardilovicha, A.N. Govyadinovb, N. I. Mukhurovb,A.M. Rzhevskiic, R.Paterson, New and modified anodic alumina membranes Part I. Thermotreatment of anodic alumina membranes, Journal of Membrane Science, vol.98, pp. 131-142, 1995.
57. W. Leitner, Green chemistry:Designed to dissolve, Nature, vol.405, pp.129-130, 2000.
58. F.P. Lucien, N.R. Foster, P.G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids ,WILEY-VCH Verlag GmbH, 1999.
59. K. L. Toews, R.M. Shroll, C.M. Wai, and N.G. Smart, pH-Defining Equilibrium between water and supercritical CO2 Influence on SFE of organics and metal Chelates, Analytical Chemistry, vol.67,pp.4040-4043,1995
60. O.E. Kongstein, G. M. Haarberg, and J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density ,pH and temperature, Journal of Applied Electrochemistry, vol. 37, pp. 669- 674, 2007.
61. L. Devetta, A. Giovanzana, P. Canu, A. Bertucco, and B. J. Minder, Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2, Catalysis Today, vol.48, pp.337-345, 1999.
62. H. S. Phiong, F.P. Lucien, and A.A. Adesina, Three-phase catalytic hydrogenation of α-methylstyrene in supercritical carbon dioxide, The Journal of Supercritical Fluids, vol. 25, pp.155-164, 2003
|