進階搜尋


下載電子全文  
系統識別號 U0026-2408201614284800
論文名稱(中文) 矽晶太陽能電池於燒結過程產生的翹曲行為模擬與殘留應力分析
論文名稱(英文) Residual Stress Analysis and Bow Simulation of Crystalline Silicon Solar Cells Induced by Firing Process
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 陳志宏
研究生(英文) Chih-Hung Chen
學號 N68951055
學位類別 博士
語文別 中文
論文頁數 83頁
口試委員 指導教授-胡宣德
口試委員-朱聖浩
口試委員-王雲哲
口試委員-鍾興揚
口試委員-黃炯憲
口試委員-周中哲
口試委員-林福銘
中文關鍵字 有限元素分析  翹曲  殘留應力  矽晶太陽能電池 
英文關鍵字 bow  solar cell  silicon solar cell  finite element analysis  residual stress 
學科別分類
中文摘要 近年來矽晶太陽能電池為了降低成本,太陽能晶片尺寸越來越大且厚度越來越薄。以致於燒結過程所產生的翹曲問題越來越被重視,本文提供一套系統化的方法來模擬太陽能電池於燒結過程中的翹曲行為,這套方法包含三個部份: (1) 奈米壓痕實驗求得正面銀膠和背面鋁膠的材料參數;(2)電子顯微鏡求得銀膠和鋁膠的厚度;(3) 利用非線性有限元素分析模擬太陽能電池燒結過程。本文利用這套方法模擬單晶矽太陽能電池於燒結過程所產生的翹曲變形量,和Huster和Hilali建議的翹曲變形量計算公式相比更為貼近實驗數據。並進一步利用這套方法分析澆鑄法(cast method)和限邊薄片狀晶體生長法(Edge-defined film fed growth EFG)所製成的多晶矽太陽能電池,發現矽晶片的材料非等向性對於翹曲的影響很小。這套方法同時可以針對矽晶太陽能電池進行幾何參數分析,當背面鋁膠厚度增加時,翹曲變化量也會跟著增加;正面銀膠則具有抑制翹曲的效果,當正面銀膠厚度每增加10µm時,大約可以減少0.1mm的翹曲變化量。這套方法同時可以提供正面銀膠柵線的設計,以3柵線(3-busbar)太陽能電池為例,當柵線增加銀膠面積時,翹曲變化量也會減少,同時可以檢示柵線於燒結後的塑性應變,其塑性應變較大之處較容易於燒結的過程中發生破壞。這套方法同時提供了矽晶太陽能電池於燒結後的殘留最大主應力的大小與分佈,同時發展出簡單的殘留應力計算公式來計算矽晶太陽能電池於燒結後的殘留應力。
英文摘要 In this thesis, a systematic approach for simulating the cell bowing induced by the firing process is presented. This approach consists of three processes: (1) the material properties are determined using a nanoidentation test; (2) the thicknesses of aluminum (Al) paste and silver (Ag) busbars and fingers are measured using scanning electron microscopy; (3) Non-linear finite element analysis (FEA) is used for simulating the cell bowing induced by the firing process. As a result, the bowing obtained using FEA simulation agrees better with the experimental data than that using the bowing calculations suggested by Huster and Hilali. Bow simulation of single crystalline silicon (sc-Si), cast, and edge-defined film-fed growth (EFG) multi-crystalline silicon wafer of different thickness is presented. The influence of different silicon wafer for cell bowing is not obvious. When the thickness of Al-paste increases, the bowing induced by the firing process increases. Conversely, the increasing thickness of Ag busbar and fingers makes the decreasing bowing. It is also proposed that the metallization pattern, Ag busbars and fingers screen printed on the front of a solar cell, can be designed using this approach. A practical case of a 3-busbar Si solar cell is presented. In addition, the total in-plane residual stress state in the wafer/cell due to the firing process can be determined using the FEA simulation. A detailed analysis of the firing-induced stress state in single crystalline silicon (sc-Si), cast, and edge-defined film-fed growth (EFG) multi-crystalline silicon wafers of different thicknesses is presented. Based on this analysis, a simple residual stress calculation is developed to estimate the maximum in-plane principal stress in the wafers.
論文目次 目錄
摘要(中文) I
英文延伸摘要 II
致謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
§1.1 研究動機 1
§1.2 研究目的 4
§1.3 研究方法 5
§1.4 論文架構 7
第二章 文獻回顧 9
§2.1 矽晶太陽能電池簡介 9
§2.1.1 太陽能電池基本原理 9
§2.1.2 太陽能電池種類 14
§2.1.3 結晶矽太陽能電池基本構造 18
§2.2 太陽能電池於燒結後的翹曲行為 23
§2.3 太陽能電池翹曲之有限元素分析 26
§2.4 太陽能電池之殘留應力 27
第三章 實驗方法 28
§3.1 矽晶太陽能電池製程與翹曲測量 28
§3.2 奈米壓痕試驗 30
§3.3 電子顯微鏡觀測 33
第四章 有限元素分析模型 34
§4.1 幾何參數 34
§4.2 材料參數 37
§4.3 邊界條件 38
§4.4 有限元素分析 39
第五章 分析結果與討論 40
§5.1 與實驗結果的比較 40
§5.2 不同矽晶片對翹曲之影響 43
§5.3 幾何參數對翹曲之影響 44
§5.3.1 背面鋁膠厚度之影響 44
§5.3.2 正面銀膠厚度之影響 45
§5.3.3 三柵線設計對翹曲之影響 46
§5.4 矽晶片於燒結後的殘留應力 48
第六章 結論與未來建議 51
§6.1 結論 51
§6.2 未來建議 53
參考文獻 54
表格 58
圖 60






表目錄
表4 - 1矽晶太陽能電池幾何參數。 58
表4 - 2銀膠和鋁膠的材料參數。 59













圖目錄
圖2- 1 P-N界面之擴散電流及漂移電流之示意圖 60
圖2- 2 太陽能電池基本結構圖 61
圖2- 3背面鋁膠於燒結過程中形成背面電場的六個階段。[Huster, 2005b] 62

圖3 - 1 單晶矽晶片製作流程:(1) 融化多晶矽與摻雜物。(2) 注入<100>方向晶種。(3) 開始長晶。(4) 拉晶。(5) 形成晶體並留下殘留物。 [https://zh.wikipedia.org/wiki/柴可拉斯基法] 63
圖3 - 2 單晶矽晶片線切割示意圖[Möller, 2004]。 64
圖3 - 3 一般結晶矽太陽能電池製程。[TSEC, http://www.tsecpv.com/zh-tw] 65
圖3 - 4 矽晶太陽能電池於燒結過程中的溫度變化。 66
圖3 - 5 典型奈米壓痕試驗的壓深曲線。[Oliver, Pharr, 1992] 67
圖3 - 6 正面銀膠和背面鋁膠於奈米壓痕試驗的壓深曲線。 68
圖3 - 7 電子顯微鏡下單晶矽太陽能電池之橫斷面圖。 69

圖4 - 1 矽晶太陽能電池幾何外形示意圖(未按實際比例) 70
圖4 - 2 完美彈塑性之材料應力-應變圖。 71
圖4 - 3 1/4單晶矽太陽能電池之有限元素分析模型。 72
圖4 - 4 完整單晶矽太陽能電池之有限元素分析模型。 73

圖5 - 1 ABAQUS模擬單晶矽太陽能電池於燒結後的翹曲變形。 74
圖5 - 2 實驗數據及有限元素分析結果和其它翹曲變化計算公式,針對不同厚度之單晶矽太陽能電池於燒結後的翹曲變化量。 75
圖5 - 3 單晶矽(sc-Si)、澆鑄法多晶矽(cast wafer)及限邊薄片狀晶體生長法多晶矽太陽能電池(EFG wafer)針對不同厚度的矽晶片於燒結過程後的翹曲變化量。 76
圖5 - 4 不同背面鋁膠厚度對於單晶矽太陽能電池於燒結後翹曲變化量之影響。 77
圖5 - 5 不同正面銀膠厚對厚度200µm的單晶矽太陽能電池於燒結後的翹曲變化影響。 78
圖5 - 6 156 mm × 156 mm的多單矽太陽能電池上採2柵線和3柵線設計對翹曲變化之影響。 79
圖5 - 7 三柵線多晶矽太陽能電池:(a) 正面柵線 (b) 背面鋁膠與背面柵線。 80
圖5 - 8 3柵線多晶矽太陽能電池的正面銀膠柵線之最大塑性應變分布圖 81
圖5 - 9 太陽能電池於燒結後矽晶片上之最大主應力分佈:(a) 單晶矽太陽能電池(sc-Si wafer, 125 mm × 125 mm)。(b) 澆鑄法多晶矽太陽能電池(cast wafer, 125 mm × 125 mm)。(c) 澆鑄法多晶矽太陽能電池(cast wafer, 156 mm × 156 mm)。(d) 限邊薄片狀晶體生長法多晶矽太陽能電池(EFG wafer, 100 mm × 100 mm)。 82
圖5 - 10不同厚度的矽晶太陽能電池於燒結後的殘留最大主應力。 83

參考文獻 [1] Bähr, M., Dauwe, S., Lawerenz, A., mittelstädt, L., “Comparison of bow-avoiding Al pastes for thin, large-area crystalline silicon solar cells,” in: 20th EPSEC, Barcelona, pp. 926-929, (2005).

[2] Best, S. R., Hess, D. P., Belyaev, A., et al., “Audible vibration diagnostics of thermo-elastic residual stress in multi-crystalline silicon wafers,” Applied Acoustics, 67(6): 541-549, (2006).

[3] Bridgman, P. W., “Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin,” Proceedings of the American Academy of Arts and Sciences, 60(6), pp. 305-383, (1925).

[4] Brito, M. C., Maia Alves, J., Serra, J. M., et al., “Measurement of residual stress in EFG ribbons using a phase-shifting IR photoelastic method,” Solar Energy Materials and Solar cells, 87(1-4), pp. 311-316, (2005a).

[5] Brito, M. C., Pereira, J. P., Maia Alves, J., et al., “Measurement of residual stress in multicrystalline silicon ribbons by a self-calibrating infrared photoelastic method,” Review of Scientific instruments, 76, 013901, (2005b).

[6] Brown, G. R., Levine, R. A., Shaikh, A., et al., “Three-Dimensional Solar Cell Finite-Element Sintering Simulation,” J. Am. Ceram. Soc., 92(7), pp. 1450-1455, (2009).

[7] Chapin, D. M., Fuller, C. S., Pearson, G. L., “A new silicon p­n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, pp. 676, (1954).

[8] Funke, C., Kullig, E., Kuna, M., et al., “Biaxial Fracture Test of Silicon Wafers,” Advanced engineering materials, 6(7), pp. 594-598, (2004).

[9] Hauch, J. A., Holland, D., Marder, M. P., Swinney H. L.,“Dynamic fracture in single crystal silicon,” Physical Review Letters, 82(19), pp. 3823-3826, (1999).


[10] He, S., Danyluk, S., “Residual stresses in polycrystalline silicon sheet and their relation to electron-hole lifetime,” Applied physics letters, 89, 111909, (2006).

[11] He, S., Zheng, T., Danyluk, S., “Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples,” Journal of Applied Physics, 96(6): 3103-3109, (2004).

[12] Hilali, M. M., Gee, J. M., Hacke, P., “Bow in screen-printed back-contact industrial silicon solar cells,” Solar Energy Material & Solar Cells, 2007, 91(13):1228-1233, (2007).

[13] Hopcroft, M. A., Nix, W. D., Kenny, T. W., “What is the Young’s modulus of silicon,” Journal of Microelectromechamical System, 19(2), pp. 229-238, (2010).

[14] Huster, F., 2005a, “Aluminium-back surface field: bow investigation and elimination,” 20th EPSEC, Barcelona, Spain, pp. 635-638, (2005a).

[15] Huster, F., “Investigation of the alloying process of screen printed aluminium pastes for the BSF formation on silicon solar cells,” in: 20th EPSEC, Barcelona, pp. 1466-1469, (2005b).

[16] Kohn, C., Faber, T., Kübler, R., Beinert, J., Kleer, G., Clement, F., Erath, D., Reis, I., Martin, F., Müller, A., “Analyses of warpage effects induced by passivation and electrode coatings in silicon solar cells,” in: EU PVSES, pp. 1270-1273, (2007).

[17] Li, F., Garcia, V., Danyluk, S., “Full Field Stress Measurements in Thin Silicon Sheet,” Proceedings of the Fouth World conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 1, pp. 363-368, (2006)

[18] Merle B., Göken, M., “Fracture toughness of silicon nitride thin films of different thicknesses,” Acta Materialia, 59, pp. 1772-1779, (2011).

[19] Möller, H. J., “Basic Mechanisms and Models of Multi-wire Sawing,” Advanced Engineering Materials, 6(7), pp. 501-513, (2004).

[20] Oliver, W. C., Pharr, G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment,” J. Mater. Res., 7(6), pp. 1564-1583, (1992).
[21] Nelson, J., The physics of solar cells, Imperial College Press, (2003).

[22] Parretta, A., Sarno, A., Tortora, P., Yakubu, H., Maddalena, P., Zhao, J., Wang, A. “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, 172, pp. 139-151, (1999).

[23] Ravl, K. V., “The growth of EFG silicon ribbons,” Journal of Crystal Growth, 39, pp.1-16, 1977.

[24] Schneider, A., Gerhards, C., Huster, F., Neu, W., Spiegel, M., Fath, P., Bucher, E., Young, R. J. S., Prince, A. G., Raby, J. A., Carroll, A. F., “Al BSF for thin screen-printed multicrystalline Si solar cells,” in: 17th European Photovoltaic Solar Energy Conference, Munich, Germany, pp. 1768-1771, (2001).

[25] Schneider, A., Gerhards, C., Fath, P., Bucher, E., “Bow reducing factors for thin screen-printed mc-Si solar cells with Al BSF,” in: 29th IEEE Photovoltaic Specialists Conference, pp. 336-339, (2002).

[26] Stockbarger, D. C., “The production of large single crystals of lithium fluoride,” Review of Scientific Instruments, 7, pp. 133, (1936).

[27] Szlufcik, J., Duerinckx, F., Horzel, J., Kerschaver, E. V.,Dekkers, H., Wolf, S. D., Choulat, P., Allebe, C., Nijs, J.,“High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells,” Solar Energy Material & Solar Cells, 74, pp. 155-163, (2002).

[28] Teal, G. K., Little, J. B., “Growth of germanium single crystals”, Physical Review Letters, 78, pp. 647, (1950).

[29] Timoshenko, S., “Analysis of Bi-Metal Thermostats,” journal of the Optical Society of America, 11(3), pp.233-255, (1925)

[30] Williams, R., “Becquerel photovoltaic effect in binary compounds,” The journal of Chemical Physics, 32(5), pp. 1505-1514, (1960).

[31] Wu, P. H., Lin, I. K., Yan, H. Y., Ou, K. S., Chen, K. S., Zhang, X., “Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing,” Materials Science and Engineering A, 168, pp. 117-126, (2011).

[32] Yasutake, K., Uemno, M., Kawabe, H., et al., “Measurement of Residual stress in Bent Silicon Wafers by Means of Photoluminescence”, Japanese Journal of Appied Physics, 21(1):1715-1719, (1982).

[33] Yu, L., Jiang, Y., Lu, S., et al., “3D FEM for sintering of Solar Cell with Boron Back Surface Field Based on Solidwork Simulation,” IERI Procedia 1, pp. 81-86, (2012).

[34] 中華民國經濟部能源局, 新及再生能源領域-105年度研發規劃報告書(大綱), 2014

[35] 台灣太陽光電產業協會, 矽晶太陽電池技術、成本與性能, 2012

[36] 元晶太陽能科技股份有限公司(TSEC), http://www.tsecpv.com/zh-tw
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw