系統識別號 U0026-2408201517292900
論文名稱(中文) 分析及預估熱帶太平洋衛星測高海水面異常
論文名稱(英文) Analysis and prediction of satellite altimetric sea level anomalies in the tropical Pacific Ocean
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 103
學期 2
出版年 104
研究生(中文) 陳怡靜
研究生(英文) Yi-Ching Chen
學號 P66024031
學位類別 碩士
語文別 英文
論文頁數 96頁
口試委員 指導教授-郭重言
中文關鍵字 衛星測高  經驗正交法  ARIMA  支持向量回歸 
英文關鍵字 Satellite Altimetry  Empirical Orthogonal Function  Autoregressive Integrated Moving Average Models  Support Vector Regression 
中文摘要 隨著全球暖化,海水面上升對人類生活環境與經濟造成極大的影響,嚴重可能危及人類生命及財產,因此,持續監測與分析海水面是相當重要議題,可便於瞭解海洋特徵與訊號,另外準確預估海水面未來變化對沿岸經營管理亦是不可或缺的資訊。本研究使用多顆測高衛星觀測得海水面異常資料,利用傳統經驗正交法(Empirical Orthogonal Functions)、複數經驗正交法(Complex EOF)以及斜率經驗正交法(Trend EOF)分析熱帶太平洋海水面異常資料並萃取出主要海洋變化訊號,透過分解後的空間特徵與對應的時間序列推斷代表之海洋現象。分析結果顯示,傳統經驗正交法與複數經驗正交法皆顯示出在熱帶太平洋地區的主要特徵訊號為聖嬰現象,與多重聖嬰現象指數(Multivariate ENSO Index, MEI)比較,其相關係數高達0.9,而複數經驗正交法更能顯示出模式(modes)中海水面訊號的傳遞訊息。此外,海水面上升速率可由斜率經驗正交法直接分解測高海水面異常資料求得,其第一個模態顯現海水面上升的特徵,估算1993年至2013年熱帶太平洋海水面上升速率為2.6 mm/yr。除分析海水面訊號,本研究亦利用傳統經驗正交法分解結果,透過Autoregressive Integrated Moving Average (ARIMA) model以及Support Vector Regression (SVR)對前五個分解得到的時間序列(PCs)做一年預估,結合前五個對應空間模式重建每月海水面異常,並進行預估結果評估。結果顯示在熱帶太平洋SVR比ARIMA預估能力好,評估一年預估值與觀測值差值之均方根誤差,SVR預估之均方根誤差為1 mm,而ARIMA預估則為1.5 mm。另外,利用決定係數(coefficient of determination)評估空間精度,SVR預估結果顯示將近有62%的研究區之決定係數大於0.9,而ARIMA結果僅有42%的區域能有較好的預估表現。
英文摘要 Sea level rise, one of the consequences of global warming, has a substantial impact on economic and living environment to even damage human life and property. Therefore, continuous monitoring and analyzing sea level signals are extremely important for understanding ocean characteristics while accurate predicting of sea level changes is also indispensable for coastal management to prevent or reduce disaster resulting from sea level rise. In this research, three kinds of Empirical Orthogonal Functions (EOFs), including conventional EOF, Complex EOF and Trend EOF, were applied to decompose monthly gridded sea level anomalies data derived from satellite altimetry to extract dominant signals in spatial and corresponding temporal domains for finding out the ocean phenomena. After examining the leading corresponding principle components (PCs) derived from the conventional EOF or Complex EOF with ENSO index, we discover that ENSO signal is the dominant phenomena in the Tropical Pacific Ocean and the correlation coefficients of the PCs and Multivariate ENSO Index (MEI) are up to roughly 0.9. Moreover, complex EOF can show information about the signal propagation in the decomposed modes. Trend EOF can directly extract the trend, which is presented in first mode, from altimetric sea level anomalies with the estimated rate of 2.6 mm/yr during 1993-2013 in tropical Pacific Ocean. Not only focus on analyzing the ocean signal but also interested in sea level prediction, Autoregressive Integrated Moving Average (ARIMA) model and Support Vector Regression (SVR) were used to predict one-year time series of the first five PCs derived from the conventional EOF decomposition. Afterwards, we reconstructed gridded sea level anomalies using the combination of predicted PCs and spatial modes. The one-year predicted results in the tropical Pacific Ocean indicate that SVM demonstrates a better performance in predicting with the root mean square error (RMSE) of differences between the SVR predicted and observed mean sea level anomalies at 1 mm, when RMSE differences of ARIMA predicted and observed sea level is 1.5 mm. Sixty-two percent of the study areas can be perfectly predicted by SVR with the coefficient of determination larger than 0.9 while ARIMA just can predict well in the 42% of the area.
論文目次 中文摘要 i
Abstract iii
誌謝 v
Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Outlines 8
Chapter 2 Satellite Altimetry 9
2.1 Introduction to Satellite Altimetry 9
2.2 Principle of Satellite Altimetry 13
2.3 Corrections for Altimetry Measurements 15
2.3.1 Orbit error 16
2.3.2 Instrument corrections 16
2.3.3 Geophysical corrections 17
2.3.4 Propagation corrections 18
2.3.5 Surface corrections 19
2.4 Altimatry data 21
Chapter 3 Methods 24
3.1 Flow chart 24
3.2 Methods of Spatial–Temporal Data Analysis 25
3.2.1 Conventional Empirical Orthogonal Function (EOF) 25
3.2.2 Complex Hilbert Empirical Orthogonal Function (Complex EOF) 27
3.2.3 Trend Empirical Orthogonal Function (Trend EOF) 30
3.3 Autoregressive Integrated Moving Average Models 33
3.4 Support Vector Regression 38
Chapter 4 Results and discussion 44
4.1 Experimental area 44
4.2 EOF Analysis in the Tropical Pacific Ocean 46
4.2.1 Analysis of conventional EOF 46
4.2.2 Analysis of complex EOF 51
4.2.3 Analysis of trend EOF 58
4.3 Performance of ARIMA Prediction 64
4.4 Prediction Performance of SVR 77
4.5 Reconstructed 1-year Prediction Results 82
Chapter 5 Conclusions and Recommendations 88
參考文獻 Ablain, M., Cazenave, A., Valladeau, G., & Guinehut, S. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993-2008. Ocean Science, 5(2), 193-201.
Alvarez, A. (2003). Performance of satellite-based ocean forecasting (SOFT) systems: a study in the Adriatic Sea. Journal of Atmospheric and Oceanic Technology, 20(5), 717-729.
Andersen, O. B., & Scharroo, R. (2011). Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In Coastal altimetry (pp. 103-145). Springer Berlin Heidelberg.
Barbosa, S. M., & Andersen, O. B. (2009). Trend patterns in global sea surface temperature. International Journal of Climatology, 29(14), 2049-2055.
Barnett, T. P. (1985). Variations in near-global sea level pressure. Journal of the atmospheric sciences, 42(5), 478-501.
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., & Delcroix, T. (2012). Sea level variations at tropical Pacific islands since 1950. Global and Planetary Change, 80, 85-98.
Beckley, B. D., Lemoine, F. G., Luthcke, S. B., Ray, R. D., & Zelensky, N. P. (2007). A reassessment of global and regional mean sea level trends from TOPEX and Jason‐1 altimetry based on revised reference frame and orbits. Geophysical Research Letters, 34(14).
Blanc, F., Borra, M., & Boudou, P. (1996). AVISO User Hand-book for Merged TOPEX/POSEIDON Products. Toulouse, France: AVI-NT-02-101-CN, Edition, 3.
Box, G. E. P., Jenkins, G. M., & Reinsel., G. C. (2007). Time series analysis: forecasting and control (4th ed.).
Box, G. E., & Jenkins, G. M. (1976). Time series analysis: forecasting and control (revised ed.). Holden-Day.
Calafat, F. M., & Gomis, D. (2009). Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global and Planetary Change, 66(3), 225-234.
Cazenave, A., & Llovel, W. (2010). Contemporary sea level rise. Annual review of marine science, 2, 145-173.
Cazenave, A., & Remy, F. (2011). Sea level and climate: measurements and causes of changes. Wiley Interdisciplinary Reviews: Climate Change, 2(5), 647-662.
Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K., & Toumazou, V. (2002). Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Global and Planetary Change, 34(1), 59-86.
Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4(5), 358-361.
Chambers, D. P. (2006). Observing seasonal steric sea level variations with GRACE and satellite altimetry. Journal of Geophysical Research: Oceans (1978–2012), 111(C3).
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Chelton, D. B., Walsh, E. J., & MacArthur, J. L. (1989). Pulse compression and sea level tracking in satellite altimetry. Journal of atmospheric and oceanic technology, 6(3), 407-438.
Chen, G., & Wang, X. (2014). Impact of domain geometry on the results of empirical orthogonal function analysis. Annals of GIS, 20(3), 205-216.
Church, J. A., & White, N. J. (2006). A 20th century acceleration in global sea‐level rise. Geophysical research letters, 33(1).
Church, J. A., White, N. J., Coleman, R., Lambeck, K., & Mitrovica, J. X. (2004). Estimates of the regional distribution of sea level rise over the 1950-2000 period. Journal of climate, 17(13), 2609-2625.
Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. Power Systems, IEEE Transactions on, 18(3), 1014-1020.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., ... & Maisongrande, P. (2011). SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in space research, 47(9), 1497-1507.
Deser, C., Alexander, M. A., Xie, S. P., & Phillips, A. S. (2010). Sea surface temperature variability: Patterns and mechanisms. Marine Science, 2.
Doody, D. (2001). The basics of space flight. Jet Propulsion Laboratory. Pasadena, CA.
Esquivel, P., Barocio, E., Andrade, M. A., & Lezama, F. (2009). Complex empirical orthogonal function analysis of power system oscillatory dynamics. In Inter-area Oscillations in Power Systems (pp. 159-187). Springer US.
Fish, M. R., Cote, I. M., Gill, J. A., Jones, A. P., Renshoff, S., & Watkinson, A. R. (2005). Predicting the Impact of Sea‐Level Rise on Caribbean Sea Turtle Nesting Habitat. Conservation biology, 19(2), 482-491.
Hamlington, B. D., Leben, R. R., Nerem, R. S., Han, W., & Kim, K. Y. (2011). Reconstructing sea level using cyclostationary empirical orthogonal functions. Journal of Geophysical Research: Oceans (1978–2012), 116(C12).
Hannachi, A. (2007). Pattern hunting in climate: a new method for finding trends in gridded climate data. International journal of climatology, 27(1), 1-15.
Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27(9), 1119-1152.
Hendricks, J. R., Leben, R. R., Born, G. H., & Koblinsky, C. J. (1996). Empirical orthogonal function analysis of global TOPEX/POSEIDON altimeter data and implications for detection of global sea level rise. Journal of Geophysical Research: Oceans (1978–2012), 101(C6), 14131-14145.
Horel, J. D. (1984). Complex principal component analysis: Theory and examples. Journal of climate and Applied Meteorology, 23(12), 1660-1673.
Imani, M., You, R. J., & Kuo, C. Y. (2014). Analysis and prediction of Caspian Sea level pattern anomalies observed by satellite altimetry using autoregressive integrated moving average models. Arabian Journal of Geosciences, 7(8), 3339-3348.
Imani, M., You, R. J., & Kuo, C. Y. (2014). Forecasting Caspian Sea level changes using satellite altimetry data (June 1992–December 2013) based on evolutionary support vector regression algorithms and gene expression programming. Global and Planetary Change, 121, 53-63.
Imel, D. A. (1994). Evaluation of the TOPEX/POSEIDON dual‐frequency ionosphere correction. Journal of Geophysical Research: Oceans (1978–2012), 99(C12), 24895-24906.
IPCC. (2007). Climate Change 2007: The Physical Science Basis. (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change).
IPCC. (2013). Climate Change 2013: the Physical Science Basis. (Working Group 1 Contribution to the Fifth Assessment Report of the International Panel on Climate Change International Panel on Climate Change, Cambridge).
Johansson, J. M. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research, 107(B8)
Kaplan, A., Kushnir, Y., & Cane, M. A. (2000). Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854-1992*. Journal of Climate, 13(16), 2987-3002.
Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1), 307-319.
Lebedev, S. A., Troitskaya, Y. I., Rybushkina, G. V., & Dobrovolsky, M. N. (2014, May). Satellite altimetry of large lakes of the Baltic Basin. In Baltic International Symposium (BALTIC), 2014 IEEE/OES (pp. 1-5). IEEE.
Leuliette, E. W., Nerem, R. S., & Mitchum, G. T. (2004). Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy, 27(1-2), 79-94.
Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism Management, 23(4), 389-396.
Lins, I. D., Araujo, M., das Chagas Moura, M., Silva, M. A., & Droguett, E. L. (2013). Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Computational Statistics & Data Analysis, 61, 187-198.
Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303.
Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemoine, J. M., ... & Ishii, M. (2007). Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary Science Letters, 254(1), 194-202.
Lorenz, E. N. (1956). Empirical orthogonal functions and statistical weather prediction.
Navarra, A., & Simoncini, V. (2010). A guide to empirical orthogonal functions for climate data analysis. Springer Science & Business Media.
Nerem, R. S., Chambers, D. P., Choe, C., & Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(S1), 435-446.
Nerem, R. S., Chambers, D. P., Leuliette, E. W., Mitchum, G. T., & Giese, B. S. (1999). Variations in global mean sea level associated with the 1997–1998 ENSO event: Implications for measuring long term sea level change. Geophysical research letters, 26(19), 3005-3008.
Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517-1520.
Nidheesh, A. G., Lengaigne, M., Vialard, J., Unnikrishnan, A. S., & Dayan, H. (2013). Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate dynamics, 41(2), 381-402.
Parker, B. B. (1992). Sea Level As an Indicator of Climate and Global Change. Marine Technology Society Journal, 25.
Périgaud, C., & Delecluse, P. (1992). Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow‐water simulations. Journal of Geophysical Research: Oceans (1978–2012), 97(C12), 20169-20178.
Preisendorfer, R. W. (1988). Principal component analysis in meteorology and oceanography (Vol. 425). C. D. Mobley (Ed.). Amsterdam: Elsevier.
Scheffers, A. M., Scheffers, S. R., & Kelletat, D. H. (2012). Coasts at risk. In The Coastlines of the World with Google Earth (pp. 239-286). Springer Netherlands.
Seeber, G. (1993). Satellite Geodesy: Foundations. Methods, and Application, Waler de Gruyter, Berlin, New York.
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., & Dokka, R. K. (2007). Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophysical Research Letters, 34(2).
Shriver, J. F., Johnson, M. A., & O'Brien, J. J. (1991). Analysis of remotely forced oceanic Rossby waves off California. Journal of Geophysical Research: Oceans (1978–2012), 96(C1), 749-757.
Stammer, D., Cazenave, A., Ponte, R. M., & Tamisiea, M. E. (2013). Causes for contemporary regional sea level changes. Annual review of marine science, 5, 21-46.
Tarpanelli, A., Barbetta, S., Brocca, L., & Moramarco, T. (2013). River discharge estimation by using altimetry data and simplified flood routing modeling. Remote Sensing, 5(9), 4145-4162.
Urban, T. J., Pekker, T., Tapley, B. D., Kruizinga, G. L., & Shum, C. K. (2001). A multiyear intercomparison of wet troposphere corrections from TOPEX/Poseidon, ERS‐1 and ERS‐2 Microwave Radiometers and the European Centre for Medium‐Range Weather Forecasts model. Journal of Geophysical Research: Oceans (1978–2012), 106(C9), 19657-19669.
Vaziri, M. (1997). Predicting Caspian Sea surface water level by ANN and ARIMA models. Journal of waterway, port, coastal, and ocean engineering, 123(4), 158-162.
Wahr, J. M. (1985). Deformation induced by polar motion. Journal of Geophysical Research: Solid Earth (1978–2012), 90(B11), 9363-9368.
Wang, L. (2005). Support Vector Machines: theory and applications (Vol. 177). Springer Science & Business Media.
Weare, B. C., Navato, A. R., & Newell, R. E. (1976). Empirical orthogonal analysis of Pacific sea surface temperatures. Journal of Physical Oceanography, 6(5), 671-678.
Wu, Y.-H. (2011). Spatio-Temporal Variations of Sea-Level for ENSO: Intercomparison Study of Geodetic Satellite Data. (Doctoral thesis, National Central University). Available from Airiti AiritiLibrary database.
Yu, P. S., Chen, S. T., & Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3), 704-716.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-07起公開。

  • 如您有疑問,請聯絡圖書館