進階搜尋


下載電子全文  
系統識別號 U0026-2408201516252100
論文名稱(中文) 降低軸向柱塞泵流量脈動之配流盤設計與分析
論文名稱(英文) Design and Analysis of the Valve Plate for Flow Fluctuation Reduction in an Axial Piston Pump
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 李紀衡
研究生(英文) Chi-Heng Lee
電子信箱 thank6204@gmail.com
學號 N16021228
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-黃聖杰
口試委員-李輝煌
口試委員-黃登淵
中文關鍵字 軸向柱塞泵  配流盤設計  流量脈動  計算流體力學 
英文關鍵字 axial piston pump  valve plate  flow fluctuation  CFD 
學科別分類
中文摘要 本研究針對高效能軸向柱塞泵進行模擬分析,並將柱塞泵內零組件進行機構設計,目的在降低其出口流量脈動,增加軸向柱塞泵的流動穩定性,以達到低噪音、高效率之液壓系需求。軸向柱塞泵包含一個關鍵零組件-配流盤 (Valve Plate),它的結構形式、尺寸、材料及加工精度合理與否,將直接影響柱塞泵的容積效率及泵內液壓油流動特性。由於柱塞泵運作過程中產生的壓力衝擊 (Pressure Impact)與流量脈動 (Flow Fluctuation)是導致液壓系統噪音的主要原因之一,而流量脈動為本研究的主軸並以流量脈動率 (Flow Fluctuation Rate)及相對標準偏差 (Coefficient of Variation)作為指標,理想情況下,流量脈動率及相對標準偏差表現越低,對軸向柱塞泵的效益越佳,所以在配流盤結構中,本研究會利用緩衝槽 (Buffer Grooves)、阻尼孔 (Damping Holes)設計與其所配合之預壓室 (Pre-compression Reservoir)設計進行分析,藉由分析結果可得知,配流盤結構改變後,柱塞泵出口流動脈動明顯改善許多,並將其設計做參數優化,期望計算後的流量脈動率與相對標準偏差更能有效降低,使得柱塞泵穩定輸出液壓油。為模擬軸向柱塞泵的循環動態流場性質,本研究利用商業計算流體力學軟體Fluent,而Fluent也為目前使用最廣泛的CFD (Computational Fluid Dynamic)軟體之一。
英文摘要 This study consists of simulated high efficient axial piston pump operations and is an attempt to decrease the flow fluctuation rate of the axial piston pump’s outlet. The operations of an axial piston pump can cause loud noises because interactions between solid structures and fluid in the pump create a pressure impact and flow fluctuations. This research is focused on the simulation of fluid dynamics in a pump and is an attempt to modify the pump design to reduce the flow fluctuation rate of the axial piston pump’s outlet. Special attention is paid to the influence of the valve plate on the flow fluctuation rate and on the coefficient of variation in the axial piston pump under consideration. It was found that the proper design of the valve plate in an axial piston pump will dramatically lower the flow fluctuation rate in the pump especially with regard to designs involving buffer grooves, damping holes and a pre-compression reservoir. Optimizing the design parameters is intended to determine the best performance indices. As to the simulation results, the design of the valve plate in this research significantly improved the flow fluctuation rate and coefficient of variation. In this research, Fluent CFD software was used to understand the flow characteristics of the piston pump’s outlet.
論文目次 摘要 I
Extended Abstract II
誌謝 XIII
目錄 XV
表目錄 XIX
圖目錄 XX
符號說明 XXV
第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方法 6
1-4 論文架構 7
第二章、液壓泵簡介與文獻回顧 8
2-1 液壓泵簡介 8
2-1-1 背景 8
2-1-2 液壓泵之特性 11
2-1-3 液壓泵種類與比較 13
2-1-4 液壓油的性質 20
2-2 軸向柱塞泵介紹 22
2-2-1 軸向柱塞泵種類及工作原理 22
2-2-2 配流盤介紹 25
2-2-3 運動學分析 27
2-3 文獻回顧 28
第三章、理論背景與模擬分析 34
3-1 計算流體力學 34
3-1-1 有限體積法 35
3-1-2 統御方程式 37
3-1-3 紊流模型 37
3-1-4 壁面函數 39
3-1-5 SIMPLE解法 41
3-1-6 CFD求解流程 44
3-2 模擬基本假設 45
3-3 幾何模型 47
3-4 網格處理 49
3-4-1 動態網格 50
3-4-2 滑移網格 53
3-5 模擬參數 55
3-6 量化指標 57
3-7 模態分析理論 58
第四章、模擬結果與討論 60
4-1 原始軸向柱塞泵模擬結果 60
4-1-1 柱塞缸體內之壓力變化 60
4-1-2 柱塞缸體內之流量變化 61
4-1-3 軸向柱塞泵出口流量變化 62
4-2 軸向柱塞泵機構設計 64
4-2-1 幾何設計模型 67
4-2-2 柱塞缸體內之流動特性 70
4-2-3 大阻尼孔與預壓室之特性 71
4-2-4 軸向柱塞泵出口流量變化 73
4-3 優化分析 75
4-3-1 大阻尼孔之直徑 75
4-3-2 預壓室之容積 78
4-4 配流盤進階設計 87
4-4-1 配流盤模型及幾何參數 87
4-4-2 模擬結果 88
4-5 模態分析 89
4-5-1 材料參數 89
4-5-2 邊界條件設定 90
4-5-3 柱塞泵形變與自然頻率之關係 91
4-6 綜合討論 93
第五章、Double Inline Piston Pump 96
5-1 配流盤模型 98
5-2 原始配流盤之模擬結果 99
5-3 緩衝槽結構之配流盤模擬結果 101
5-3-1 緩衝槽建構位置 101
5-3-2 排油區開口大小 102
5-4 不同相位差之模擬結果 105
5-5 配流盤與預壓室設計之模擬結果 107
5-6 綜合比較 110
第六章、結論與未來展望 111
6-1 結論 111
6-2 未來展望 113
參考文獻 114
索引 116
自述 124
參考文獻 [1] 謝曉星,計算流體力學及熱傳學,高立圖書有限公司,1993。
[2] 劉履新、歐奉初,液壓學,大揚出版社,1995。
[3] 周溫成、曾賢壎,氣液壓學,高立圖書有限公司,1997。
[4] 賴耿陽,機械振動學概論,復漢出版社,2000。
[5] 邱勤山、胡世平、姜太倫、楊建裕,流體機械,高立圖書有限公司,2006。
[6] 徐業良,機械設計,滄海書局,2007。
[7] 吳采亮,新型雙斜盤柱塞幫浦之設計,國立成功大學工程科學系碩士論文,台南,台灣,2013。
[8] 王健宇,軸向柱塞泵流量脈動優化設計,國立成功大學機械工程學系碩士論文,台南,台灣,2014。
[9] Herbert E. Merritt, Hydraulic Control System, John Wiley & Sons, Inc., 1967.
[10] Eiichi KOJIMA, Hirokazu IWATA, “Modal Analysis of the Structural Vibration of an Oil-hydraulic Pump,” Vol. 27, No.2, pp 315-327, Hydraulics & Pneumatics, ISSN, 1996.
[11] Wiklund, Suction Dynamics of Axial Piston Pumps, Ph.D. Thesis, Sweden Royal Institute of Technology, Sweden, 2000.
[12] Noah D. Manring, “The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump,” Vol. 122, pp. 263-268, Journal of Dynamic Systems, Measurement, and Control of ASME, 2000.
[13] Noah D. Manring, “Valve Plate Design for an Axial Piston Pump Operating at Low Displacement,” Vol. 125, pp. 200-207, Journal of Mechanical Design of ASME, 2003.
[14] Peter Achten, et al, “Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle,” The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, May 7-9, 2003.
[15] M.A. Langthjem, “A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics,” ELSEVIER, Journal of Fluids and Structures, Vol. 19, pp. 349–368, 2004.
[16] M.A. Langthjem, “A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part II. Hydrodynamics,” ELSEVIER, Journal of Fluids and Structures, Vol. 19, pp. 369–386, 2004.
[17] Ding Wen-si, Wu Hui-yan, “Modeling and Simulation on Light Axial Piston Pump,” AMM Vols. 34-35, pp. 1859-1864, 2010.
[18] Jiang Zhai, Hua Zhou, “Model and Simulation on Flow and Pressure Characteristics of Axial Piston Pump for Seawater Desalination,“ AMM Vols. 157-158, pp. 1549-1552, 2012.
[19] M. Pelosi, M. Ivantysynova, “Heat Transfer and Thermal Elastic Deformation Analysis on the Piston/Cylinder Interface of Axial Piston Machines, ” ASME, Vol. 134, pp. 1-15, 2012
[20] Ming Hao, Xiaoye Qi, “Modeling Analysis and Simulation of Hydraulic Axial Piston Pump, ” Vol. 430, pp. 1532-1535, Advanced Materials Research, 2012
[21] Shi Jian, Lin Xin, “Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization,” Mathematical Problems in Engineering, 2014.
[22] ANSYS, ANSYS FLUENT User's Guide, ANSYS, Inc., 2011。
[23] 油聖液壓科技有限公司,http://www.yeoshe.com.tw/cht/
[24] Material Database, http://www.pragtic.com/vmat.php
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw