進階搜尋


下載電子全文  
系統識別號 U0026-2408201419051200
論文名稱(中文) 利用波形重定改善近岸與內陸小水體之Envisat測高資料
論文名稱(英文) Improvement of Envisat measurements in coastal oceans and inland small water bodies by waveform retracking
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 102
學期 2
出版年 103
研究生(中文) 楊亭宜
研究生(英文) Ting-Yi Yang
學號 P66014060
學位類別 碩士
語文別 中文
論文頁數 130頁
口試委員 指導教授-郭重言
口試委員-黃金維
口試委員-鄭凱謙
中文關鍵字 衛星測高  波形重定  小波轉換  近岸和內陸小範圍水體 
英文關鍵字 Coastal altimetry  waveform retracking  wavelet  inland small water bodies 
學科別分類
中文摘要   測高衛星於近岸與內陸應用上,受到陸地地形等影響,難以求得準確的觀測量,尤其是近岸5 km內海域與內陸小範圍水體仍是尚待解決之課題。本研究發展新的波形重定方法,以18 Hz Envisat RA-2 Cycle 10 ~ Cycle 90為研究資料,於臺灣周圍近岸實驗區中,利用Brown加上高斯模型擬合測高子波形,將高斯模型擬合之非海洋資訊移除,並自動化篩選出含有海水面資訊的波形。計算成果顯示,本研究發展之波形重定結果於各實驗區域之0-5 km海域內表現皆最為優異,重定後觀測量與驗潮站資料差值之標準偏差(Standard Deviation, STD)之最小值為11 cm(和平港站),比其他重定方法之STD小4~11 cm。然而,於離岸5~10 km處,因測高波形多為典型的海洋波形,故各演算法之表現差異並不大。此外,比較各演算法經自動化篩選前後之精度,於距海岸線0~5 km中,測高觀測精度皆有提升之情形,其最大幅度之改善可將未重定觀測量與EGM2008差值之STD由5.119 m降至1.815 m(B-1區)。於內陸小範圍水體區(濁水溪下游及嘉義縣曾文水庫),本研究利用連續小波轉換測高波形,以轉換結果之過零值獲得真正的前緣中點位置,並自動化篩選出內陸水位之波形。濁水溪研究成果顯示,本研究發展之波形重定結果可將未重定觀測量與水位站資料差值之STD從1.409 m降至0.624 m,比其他波形重定演算法小7~165 cm。於曾文水庫之結果顯示,因測高觀測量嚴重受到水庫周圍地形影響,導致水庫內所有測高觀測量中,僅有約25 %(88筆)為標準的內陸水體波形,各波形重定技術也無法顯著改善測高觀測量。其中,Ice-1與Sea-Ice演算法甚至有不合理之改正情形,故於地形起伏較大之內陸區域,即使測高衛星距離觀測量已利用波形重定演算法處理過,其應用及觀測精度仍需格外小心。
英文摘要 Satellite altimeters provide many kinds of accurate ocean measurements and become an irreplaceable tool to address wide range of scientific questions over the open oceans. However, the accuracy of observations is quickly degenerated as the altimeters are close to coasts or on non-ocean surfaces, due to improper geophysical corrections and complex returned waveforms. Although several algorithms have been developed to retrack the waveforms over the coastal oceans or non-ocean areas, the performance and accuracy are not as good as expected. In this study, we develop a novel strategy to derive accurate sea surface heights (SSHs) near the Taiwan coasts from Envisat RA-2 waveforms by using the Ocean plus Gaussian Models. We also automatically filter the improper ocean waveforms, and validate the experimental results using tide gauge records and EGM2008. The results show that our retracking strategy has substantially improved the accuracy of the altimeter derived SSHs within 0~5 km from the coastlines. Furthermore, a wavelet-based algorithm is used to retrack the Envisat waveforms in Tsengwen reservoir and Zhoushui river. The retracked water heights are evaluated using water level gauge data. In Zhuoshui river, the STD of the developed retracked water heights is 0.624 m compared to the unretracked water heights with the standard deviation (STD) of 1.409 m. However, in Tsengwen reservoir, waveform retracking cannot significantly improve the accuracy of the altimetry data, due to the surrounding terrain and automatic gain control (AGC) excessive adjustment.
論文目次 摘 要 I
Extended Abstract II
誌 謝 IX
目 錄 X
表目錄 XIII
圖目錄 XV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 論文架構 5
第二章 衛星測高原理及基本介紹 6
2-1 衛星測高發展概況 6
2-2 衛星測高基本原理 10
2-3 衛星測高誤差分析 12
2-4 Envisat測高衛星介紹 18
2-5 Envisat測高資料 24
第三章 波形重定技術 27
3-1 Envisat衛星測高波形 27
3-1-1 近岸波形 29
3-1-2 內陸小範圍水體波形 32
3-2 現有之波形重定技術 34
3-2-1 Offset Center of Gravity(OCOG)Retracker 35
3-2-2 Threshold Retracker 36
3-2-3 Modified Threshold Retracker 38
3-2-4 Ocean Retracker 40
3-2-5 Ice-1 Retracker 41
3-2-6 Sea-Ice Retracker 41
3-3 本研究發展之波形重定法 42
3-3-1 近岸之波形重定法 42
3-3-2 內陸小範圍水體之波形重定法 43
第四章 提高Envisat近岸海水面高之觀測精度 45
4-1 研究範圍與資料 45
4-1-1 研究範圍 45
4-1-2 研究資料 46
4-2 研究方法及步驟 48
4-3 研究成果與分析(1)-和平港、外埔港、高雄港與麟山鼻港之研究成果 52
4-3-1 花蓮和平港 52
4-3-2 苗栗外埔港 60
4-3-3 高雄港 66
4-3-4 臺北麟山鼻港 73
4-4 研究成果與分析(2)-A、B區之研究成果 81
4-4-1 區域與波形介紹 81
4-4-2 沿軌跡測高SSH變化 86
4-4-3 與EGM2008資料比較 88
4-5 研究成果與分析(3)-自動化篩選之成果 90
4-5-1 和平港、外埔港、高雄港與麟山鼻港 90
4-5-2 A、B實驗區域 96
第五章 衛星測高應用於內陸小範圍水體之水位監控 103
5-1 研究範圍與資料 103
5-1-1 研究範圍 103
5-1-2 研究資料 105
5-2 研究方法及步驟 107
5-3 研究成果與分析 110
5-3-1 區域與波形介紹 110
5-3-2 衛星測高與水位站資料之比較成果 113
5-3-3 曾文水庫測高波形之參數統計成果 117
第六章 結論與建議 121
6-1 結論 121
6-1-1 近岸海域之研究 121
6-1-2 內陸小範圍水體之研究 122
6-2 建議 124
參考文獻 125
參考文獻 郭金運、常曉濤、孫佳龍、高永剛 (2013),衛星雷達測高波形重定及應用,中國:測繪出版社。
郭重言、林立青、藍文浩 (2013),臺灣四周海域近十年之海水面變化速率研究,臺北:交通部運輸研究所。
彭敏峰 (2003),「以TOPEX/POSEIDON衛星測高宜觀測中國湖水變化」,國立交通大學土木工程學系碩士論文。
劉毅、陸春暉、王永、KYRÖLÄ Erkki (2011),「利用GOMOS衛星資料研究熱帶平流層臭氧、二氧化氮和三氧化氮的准兩年和半年振盪特徵」,中國科學,第56卷第18期,頁1455~1463。
AVISO (1996), AVISO USER HANDBOOK MERGED TOPEX/POSEIDON PRODUCTS (3rd ed.).
Bamber, J. L. (1994), “Ice sheet altimeter processing scheme”, International Journal of Remote Sensing, 15(4) pp. 925~938.
Brown, G. S (1977), “The Average Impulse Response of a Rough Surface and Its Applications”, IEEE Transactions on Antennas and Propagation, AP-25(1) pp. 67~74.
Cartwright, D. E. and Tayler, R. J. (1971), “New computations of the tide-generating potential”, Geophysical Journal International, 23(1) pp. 45~73.
Cartwright, D. E. and Edden, A. C. (1973), “Corrected tables of tidal harmonics”, Geophysical Journal International, 33(3) pp. 253~264.
Chelton, D. B., Walsh, E. J. and MacArthur, J. L. (1989), “Pulse compression and sea level tracking in satellite altimetry”, Journal of atmospheric and oceanic technology, 6(3) pp. 407~438.
Chovitz, B.H. (1983), “Geodetic results from Seasat”, Marine Geodesy, 7(1-4) pp. 315~330.
Church, J. A., White, N. J., Coleman, R., Lambeck, K. and Mitrovica, J. X. (2004), “Estimates of the regional distribution of sea level rise over the 1950-2000 period”, Journal of Climate, 17(13) pp. 2609~2625.
COASTALT (2011), Envisat Coastal Altimetry Product Handbook.
Collecte Localisation Satellites (1997), RA2/MWR LOP.
Davis, C. H. (1997), “A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters”, IEEE Transactions on Geoscience and Remote Sensing, 35(4) pp. 974~979.
Deng, X., Featherstone, W. E., Hwang, C. and Berry, P. A. M. (2002), “Estimation of contamination of ERS-2 and Poseidon satellite radar altimetry close to the coasts of Australia”, Marine Geodesy, 25(4) pp. 249~271.
Deng, X. and Featherstone, W. E. (2006), “A coastal retracking system for satellite radar altimeter waveforms: Application to ERS‐2 around Australia”, Journal of Geophysical Research: Oceans (1978–2012), 111(C06012).
ESA (2006), ENVISAT RA-2/MWR Level 2 User Manual.
Fedor, L. S. and Brown, G. S. (1982), “Waveheight and wind speed measurements from the SEASAT radar altimeter”, Journal of Geophysical Research: Oceans (1978–2012), 87(C5) pp. 3254~3260.
Franco, A.S. (1988), Tides: fundamentals, analysis and prediction (2nd ed.), São Paulo: Fundação Centro Tecnológico de Hidráulica.
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F. and Cazenave, A. (2006), “Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin”, Remote Sensing of Environment, 100(2) pp. 252~264.
Fricker, H. A. and Padman, L. (2012), “Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry”, Journal of Geophysical Research: Oceans (1978–2012), 117(C2).
Halimi, A., Mailhes, C., Tourneret, J. Y., Thibaut, P. and Boy, F. (2013), “Parameter estimation for peaky altimetric waveforms”, IEEE Transactions on Geoscience and Remote Sensing, 51(3) pp. 1568~1577.
Hayne, G. S. (1980), “Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering”, IEEE Transactions on Antennas and Propagation, 28(5) pp. 687~692.
Hwang, C., Kao, E. C. and Parsons, B. (1998), “Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data”, Geophysical Journal International, 134(2) pp. 449~459.
Hwang, C., Peng, M. F., Ning, J., Luo, J. and Sui, C. H. (2005), “Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO”, Geophysical Journal International, 161(1) pp. 1~11.
Hwang, C., Guo, J., Deng, X., Hsu, H. Y. and Liu, Y. (2006), “Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data”, Journal of Geodesy, 80(4) pp. 204~216.
Kaula, W.M. (1969), “The terrestrial environment, solid-earth and ocean physics, application of space and astronomic techniques, report of a study at Williamstown, Mass.”, NASA Contract.
Kuo, C. Y., Shum, C. K., Guo, J. Y., Yi, Y., Braun, A., Fukumori, I. and Shibuya, K. (2008), “Southern Ocean mass variation studies using GRACE and satellite altimetry”, Earth Planets and Space, 60(5) pp. 477~485.
Laxon, S. (1994), “Sea ice altimeter processing scheme at the EODC”, International Journal of Remote Sensing, 15(4) pp. 915~924.
Lee, H.K. (2008), Radar Altimetry Methods for Solid Earth Geodynamics Studies, The Ohio State University, Geodetic Science and Surveying.
Lee, H., Shum, C. K., Yi, Y., Ibaraki, M., Kim, J. W., Braun, A. and Lu, Z. (2009), “Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry”, Marine Geodesy, 32(3) pp. 284~302.
Maheu, C., Cazenave, A. and Mechoso, C. R. (2003), “Water level fluctuations in the Plata basin (South America) from Topex/Poseidon satellite altimetry”, Geophysical research letters, 30(3) pp. 1143~1146.
Matsumoto, K., Takanezawa, T. and Ooe, M. (2000), “Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan”, Journal of Oceanography, 56(5) pp. 567~581.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K. (2012), “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”, Journal of Geophysical Research: Solid Earth (1978–2012), 117(B04406).
Remy, F., Brossier, C. and Minster, J. F. (1990), “Intensity of satellite radar-altimeter return power over continental ice: A potential measurement of katabatic wind intensity”, Journal of Glaciology, 36(123) pp. 133~142.
Schwiderski, E.W. (1984), “Combined hydrodynamical and empirical modeling of ocean tides”, Marine Geophysical Researches, 7(1-2) pp. 215~229.
Seeber, G. (1993), Satellite geodesy: foundations, methods, and applications (1st ed.), Berlin: W. de Gruyter.
Smith, W. H. and Sandwell, D. T. (1994), “Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry”, Journal of Geophysical Research: Solid Earth (1978–2012), 99(B11) pp. 21803~21824.
Sulistioadi, Y. B., Tseng, K. H., Shum, C. K., Hidayat, H., Sumaryono, M., Suhardiman, A. and Sunarso, S. (2014), “Satellite radar altimetry for monitoring small river and lakes in Indonesia”, Hydrology and Earth System Sciences Discussions, 11(3) pp. 2825~2874.
Tseng, K. H., Shum, C. K., Yi, Y. C., Fok, H. S., Kuo, C. Y., Lee, H. K. and Wang, X. W. (2013), “Envisat Altimetry Radar Waveform Retracking of Quasi-Specular Echoes over the Ice-Covered Qinghai Lake”, Terrestrial, Atmospheric and Oceanic Sciences, 24(4I) pp. 615~627.
Tseng, K. H., Shum, C. K., Yi, Y., Emery, W. J., Kuo, C. Y., Lee, H. and Wang, H. (2014), “The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry Waveforms”, IEEE Transactions on Geoscience and Remote Sensing, 52(2) pp. 991~1001.
Vignudelli, S., Kostianoy, A. G., Cipollini, P. and Benveniste, J. (2011), Coastal altimetry (1st ed), Berlin: Springer.
Wahr, J. M. (1985), “Deformation induced by polar motion”, Journal of Geophysical Research: Solid Earth (1978–2012), 90(B11) pp. 9363~9368.
Wang, C. K. (2012), “Exploring Weak and Overlapped Returns of a LIDAR Waveform with a Wavelet-Based Echo Detector”, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1 pp. 529~534.
Wingham, D. J., Rapley, C. G. and Griffiths, H. (1986), “New techniques in satellite altimeter tracking systems”, In: Proceedings of IGARSS’ 88 symposium, Zurich, pp. 1339~1344.
Yi, Y. C., Kouraev, A. V., Shum, C. K., Vuglinsky, V. S., Crétaux, J. F. and Calmant, S. (2013), “The Performance of Altimeter Waveform Retrackers at Lake Baikal”, Terrestrial, Atmospheric and Oceanic Sciences, 24(4I) pp. 513~519.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw