進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201416113900
論文名稱(中文) Alloy 52脈衝雷射覆銲熱裂敏感性研究
論文名稱(英文) Susceptibility of Hot Cracking in Laser Treated Cladding of Alloy 52
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 李孟修
研究生(英文) Meng-Hsiu Lee
學號 N16014598
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-李驊登
口試委員-郭瑞昭
口試委員-洪廷甫
口試委員-鄭勝隆
中文關鍵字 Alloy 52  凝固裂紋  脈衝雷射覆銲  稀釋率 
英文關鍵字 Alloy 52  Solidification cracking  Pulsed laser cladding  Dilution 
學科別分類
中文摘要 為了防止核能電廠於雷射覆銲製程中產生凝固裂紋,本研究對鎳基Alloy 52銲材與SUS 316L基材,改變覆銲走速、脈衝頻率與送料率進行脈衝雷射覆銲,並對其顯微結構以及覆銲過程溫度變化進行觀察與量測,綜合討論脈衝雷射參數對熱裂敏感性之影響。
許多研究指出當覆銲層稀釋率上升時,基材中所含矽、磷、硫等雜質將進入銲道產生熱裂危害;另外由本次實驗發現當銲道所受脈衝雷射熔覆次數(脈衝密度)增加時將提高熱裂敏感性,因此降低稀釋率與脈衝密度將獲得較佳抵抗熱裂能力銲道。由實驗結果可知,隨著送料率降低使銲道稀釋率上升,提高熱裂敏感性;降低覆銲走速將使脈衝密度增加,提高熱裂敏感性;降低脈衝頻率雖然能使脈衝密度下降,但銲道稀釋率亦隨之上升,無法有效改善熱裂敏感性。除此之外脈衝雷射覆銲走速下降時雖然能降低熔池冷卻速率以及溫度分布梯度,但由實驗結果可知其值仍過高無法有效改善熱裂性質,並認為稀釋率與脈衝密度為影響熱裂敏感性的主要原因。
綜合實驗結果可知,覆銲層隨著送料率與覆銲走速的上升,將獲得較佳抵抗熱裂能力;隨著送料率與脈衝頻率的上升,將獲得較佳合金稀釋性質,因此於固定平均功率210 W時,選用脈衝頻率20 Hz、覆銲走速8 mm/s與送料率1.05 mm/mm,為本實驗最佳脈衝雷射覆銲參數組合。
英文摘要 This study investigates the effects of different cladding speed, frequency and feeding ratio on hot cracking susceptibility in pulsed laser cladding by using Alloy 52 filler metal and SUS 316L base metal.

Many researches have shown that the enhanced hot cracking susceptibility would be attributed to the content of silicon, phosphorus and sulfur in cladding layer with increasing the dilution ratio. And this study shows the hot cracking susceptibility increases with the increasing number of laser pulses per unit cladding length (pulse density). As the results of this experiment, with the decrease of welded filler wire length per unit cladding length (feeding ratio), the dilution of cladding layer increases. And hot cracking susceptibility increases. With the decrease of cladding speed, the pulse density increases. And hot cracking susceptibility increases; The decrease of frequency not only lowers the pulse density, but also increases the dilution. So the change of frequency reduces the hot cracking susceptibility ineffectively. Although the cooling rate and temperature gradient decreases with slower cladding speed, the values are still too high to reduce the hot cracking susceptibility effectively.

As the analysis of experiment, there was better hot cracking resistance under increasing cladding speed and feeding ratio, better chemical composition under increasing frequency and feeding ratio. This study chooses 20 Hz, 8 mm/s, 1.05 mm/mm to be the optima parameters.
論文目次 摘 要 I
Extended Abstract II
誌 謝 VII
總 目 錄 VIII
表 目 錄 X
圖 目 錄 XI
第一章 前言 1
第二章 文獻回顧 5
第三章 相關理論背景 13
3-1 雷射製程 13
3-1-1 Keyhole mode & Conduction mode 14
3-1-2 PW laser 15
3-2 異種金屬覆銲 19
3-2-1 基材與銲材選擇 19
3-2-2 異種金屬覆銲注意事項 21
3-2-3 Power ratio計算 22
3-3 銲接殘留應力 25
3-4 銲道凝固組織理論 28
第四章 實驗方法 31
4-1 實驗流程規劃 31
4-2 實驗方法 33
4-2-1 實驗材料 33
4-2-2 試件製備 34
4-2-3 脈衝雷射覆銲 35
4-2-4 雷射覆銲參數對熱裂影響實驗 37
4-2-5 熱循環歷程與溫度分布量測 40
4-2-6 銲道溫度變化量測 41
4-2-7 金相顯微結構觀察 42
第五章 結果與討論 44
5-1 覆銲層顯微結構分析 44
5-1-1 覆銲參數對銲道表面結構之影響 44
5-1-2 覆銲層表面裂紋與截面組織觀察 46
5-1-3 覆銲參數對銲道稀釋率之影響 52
5-2 送料率對熱裂之影響 57
5-2-1 稀釋率對熱裂之影響 57
5-2-2 改變送料率熱循環歷程與溫度分布 60
5-3 覆銲走速對熱裂之影響 64
5-3-1 覆銲走速對熔池冷卻速率之影響 64
5-3-2 脈衝密度對熱裂之影響 68
5-3-3 改變覆銲走速熱循環歷程與溫度分布 72
5-4 脈衝頻率對熱裂之影響 75
5-5 綜合討論 80
第六章 結論 83
第七章 未來研究建議與方向 85
第八章 參考文獻 86
參考文獻 [1] 林文昌, "我國二氧化碳減量的必要選擇—核能發電," 中華民國核能學會財團法人核能資訊中心核能簡訊, vol. 117, pp. 13-16, 2009.
[2] 韋光華, "綠色能源發電與儲能," 科學發展雜誌, vol. 451, pp. 26-31, 2010.
[3] W. Bamford and J. Hal, "A Review of Alloy 600 Cracking in Operating Nuclear Plants Including Alloy 82 and 182 Weld Behavior," 12th International Conference on Nuclear Engineering, 2004.
[4] J. Gorman, S. Hunt, P. Riccardella, and G. A. White, "PWR Reactor Vessel Alloy 600 Issues," Companion Guide to the ASME Boiler & Pressure Vessel Code, vol. 3, pp. 1-26, 2006.
[5] Stress Corrosion Cracking in Light Water Reactors:Good Practices and Lessons Learned. Vienna: International Atomic Energy Agency, 2011.
[6] B. P. Miglin and G. J. Theus, "Stress Corrosion Cracking of Alloy 600 and 690 in All-Volatile-Treated Water at Elevated Temperatures," EPRI Report NP-3061, 1988.
[7] M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, "Advanced TEM Characterization of Stress Corrosion Cracking of Alloy 600 in Pressurized Water Reactor Primary Water Environment," Journal of Nuclear Materials, vol. 393, pp. 254-266, 2009.
[8] W. E. Mayo, "Predicting IGSCC/IGA Susceptibility of Ni-Cr-Fe Alloys by Modeling of Grain Boundary Chromium Depletion," Materials Science and Engineering, vol. 232, pp. 129-139, 1997.
[9] Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, "Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600," Corrosion Science, vol. 43, pp. 1321-1335, 2001.
[10] P. C. Riccardella, D. R. Pitcairn, A. J. Giannuzzi, and T. L. Gerber, "Weld Overlay Repairs from Conception to Long-Term Qualification," International Journal of Pressure Vessels and Piping, vol. 34, pp. 59-82, 1988.
[11] A. J. Ramirez and J. C. Lippold, "New Insight into the Mechanism of Ductility-Dip Cracking in Ni-Base Weld Metals," Hot Cracking Phenomena in Welds, pp. 19-41, 2005.
[12] 陳泓昇, "鎳基銲材Alloy 52鈮含量對銲道影響," 國立成功大學機械工程學系碩士論文, 2013.
[13] T. Miura, W. Kono, I. Chida, T. Hino, S. Yamamoto, M. Yoda, and M. Ochiai, "Development of Multifunction Laser Welding Head as Maintenance Technologies against Stress Corrosion Cracking for Nuclear Power Reactors," 7th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, 2009.
[14] M. Tamura, Y. Makino, T. Hino, S. Kawano, W. Kouno, and K. Matsunaga, "Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components (III)," 16th International Conference on Nuclear Engineering, 2008.
[15] M. Yoda, I. Chida, M. Tamura, and K. Sudo, "Laser-based Maintenance Technologies for Nuclear Reactors," 3th International Conference on Nuclear Power Plant Life Management for Long Term Operations, 2012.
[16] T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, and M. C. Gupta,"Laser Cladding of Inconel 690 on Inconel 600 Superalloy for Corrosion Protection in Nuclear Applications," Optics and Lasers in Engineering, vol. 51, pp. 180-184, 2013.
[17] L. Sexton, S. Lavin, G. Byrne, and A. Kennedy, "Laser Cladding of Aerospace Materials," Journal of Materials Processing Technology, vol. 122, pp. 63-68, 2002.
[18] Y. Huang, "Characterization of Dilution Action in Laser-induction Hybrid Cladding," Optics & Laser Technology, vol. 43, pp. 965-973, 2011.
[19] Y. Huang and X. Zeng, "Investigation on Cracking Behavior of Ni-based Coating by Laser-induction Hybrid Cladding," Applied Surface Science, vol. 256, pp. 5985-5992, 2010
[20] G. Xu, M. Kutsuna, Z. Liu, and H. Zhang, "Characteristics of Ni-based Coating Layer Formed by Laser and Plasma Cladding Processes," Materials Science and Engineering A, vol. 417, pp. 63-72, 2006.
[21] 曾秉鈞, "雷射表面重熔參數對SUS 304敏化不銹鋼去敏化之影響," 國立成功大學機械工程學系碩士論文, 2009.
[22] 許家旗, "雷射表面重熔法修補Alloy 82衰化之效果研究," 國立成功大學機械工程學系碩士論文, 2012.
[23] 黃証羣, "雷射表面重熔處理對Alloy 52 覆銲之效果研究," 國立成功大學機械工程學系碩士論文, 2013.
[24] 吳佳霖, "雷射與電弧銲接製程對鎳基690合金銲接特性與應力腐蝕破裂行為之研究," 國立成功大學機械工程學系博士論文, 2010.
[25] 李孟軒, "GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究" 國立成功大學機械工程學系碩士論文, 2007.
[26] K. Kadoi, A. Fujinaga, M. Yamamoto, and K. Shinozaki, "The Effect of Welding Conditions on Solidification Cracking Susceptibility of Type 310S Stainless Steel During Laser Welding Using an In-situ Observation Technique," Welding in the World, vol. 57, pp. 383-390, 2013.
[27] J. C. Lippold, "Solidification Behavior and Cracking Susceptibility of Pulsed-Laser Welds in Austenitic Stainless Steels," Welding Research Supplement, pp. 129-139, 1994.
[28] F. Fouquet, P. Sallamand, J. P. Millet, A. Frenk, and J. D. Wagniere, "Austenitic Stainless Steels Layers Deposited by Laser Cladding on a Mild Steel: Realization and Characterization," Suppltment au Journal de Physique III, vol. 4, pp. 89-92, 1994.
[29] T. Ogawa and E. Tsunetomi, "Hot Cracking Susceptibility of Austenitic Stainless Steels," Welding Research Supplement, pp. 82-93, 1982.
[30] K. Saida, K. Bunda, H. Ogiwara, and K. Nishimoto, "Microcracking Susceptibility in Dissimilar Multipass Welds of Ni-Base Alloy 690 and Low-Alloy Steel," 溶接学会論文集, vol. 31, pp. 181-192, 2013.
[31] H. A. Chu, M. C. Young, H. C. Chu, L. W. Tsay, and C. Chen, "The Effect of Nb and S Segregation on the Solidification Cracking of Alloy 52M Weld Overlay on CF8 Stainless Steel," Journal of Materials Engineering and Performance, vol. 23, pp. 967-974, 2013.
[32] H. Nagano, K. Yamanaka, K. Kobayashi, and M. Inoue, "Development and Manufacturing System on Alloy 690 Tubing For PWR Steam Generators," The Sumitomo Search, vol. 40, pp. 57-70, 1989.
[33] J. D. Kim and Y. Peng, "Plunging Method for Nd:YAG Laser Cladding with Wire Feeding," Optics and Lasers in Engineering, vol. 33, pp. 299-309, 2000.
[34] U. Dilthey, D. Fuest, and W. Scheller, "Laser Welding with Filler Wire," Optical and Quantum Electronics, vol. 27, pp. 1181-1191, 1995.
[35] J. C. Lippold, W. A. BaeslackIII, and I. Varol, "Heat-Affected Zone Liquation Cracking in Austenitic and Duplex Stainless Steels," Welding Research Supplement, pp. 1-14, 1992.
[36] Y. N. Zhang, X. Cao, and P. Wanjara, "Microstructure and Hardness of Fiber Laser Deposited Inconel 718 Using Filler Wire," The International Journal of Advanced Manufacturing Technology, vol. 69, pp. 2569-2581, 2013.
[37] P. Silva, M. Almeida, R. Miranda, and N. Pedrosa, Laser Cladding Using Filler Powder and Wire. Lisboa: Instituto Superior Tecnico, 2008.
[38] M. Doubenskaia, P. Bertrand, and I. Smurov, "Temperature Monitoring of Nd:YAG Laser Cladding (CW and PP) by Advanced Pyrometry and CCD-Camera based Diagnostic Tool," SPIE Proceedings, vol. 5399, pp. 212-219, 2004.
[39] W. M. Steen, Laser Material Processing. London: Springer-Verlag, 1991.
[40] J. C. Ion, Laser Processing of Engineering Materials. Amsterdam: Elsevier, 2004.
[41] What happens when a laser beam interacts with a material? Available:http://www.twi-global.com/technical-knowledge/faqs/process-faqs/faq-what-happens-when-a-laser-beam-interacts-with-a-material/
[42] Nd:YAG Laser Welding Guide. Monrovia: Unitek Miyachi Corporation, 2003.
[43] K. A. Mumtaz and N. Hopkinson, "Selective Laser Melting of Inconel 625 Using Pulse Shaping," Rapid Prototyping Journal, vol. 16, pp. 248-257, 2010.
[44] H. B. Cary, Modern Welding Technology. New Jersey: Prentice-Hall, 1998.
[45] Steven, L. McCracken, Richard, and E. Smith, "Behavior and Hot Cracking Susceptibility of Filler Metal 52 M (ERNiCrFe-7A) Overlays on Cast Austenitic Stainless Steel Base Materials," Hot Cracking Phenomena in Welds III, pp. 333-352, 2011.
[46] 鄭勝隆, "鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究," 國立成功大學機械工程學系博士論文, 2003.
[47] K. Saida, Y. Nomoto, H. Okauchi, H. Ogiwara, and K. Nishimoto, "Influences of Phosphorus and Sulphur on Ductility Dip Cracking Susceptibility in Multipass Weld Metal of Alloy 690," Science and Technology of Welding and Joining, vol. 17, pp. 1-8, 2012.
[48] D. W. Grandy, S. J. Findlan, and W. J. Childs, "Repair Welding of SA508, Class 2 Pressure Vessel Steels Utilizing the Consistent Layer Temperbead Technique," Materials Ageing and Component Life Extension, pp. 961-978.
[49] K. Masubuchi, Analysis of Welded Structures. Oxford: Pergamon Press, 1980.
[50] 蔡曜隆, "銲道溫度與應力分析實驗," 國立交通大學機械工程研究所碩士論文, 2001.
[51] S. Kou, Welding Metallurgy. Hoboken: Wiley, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw