進階搜尋


下載電子全文  
系統識別號 U0026-2408201316441200
論文名稱(中文) 甲硫胺酸限制飲食與耐力運動對去卵巢大鼠骨骼之代謝、組織型態與生物力學特性的影響
論文名稱(英文) The Effects of Methionine Restriction Diets and Endurance Exercise on Metabolism, Histomorphometry and Biomaterial Properties in Bone of Ovariectomized Rats
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 101
學期 2
出版年 102
研究生(中文) 蘇亦秀
研究生(英文) I-Hsiu Su
學號 rb6001011
學位類別 碩士
語文別 英文
論文頁數 39頁
口試委員 指導教授-黃滄海
口試委員-林麗娟
口試委員-楊榮森
中文關鍵字 甲硫胺酸限制  耐力運動  骨代謝  骨質疏鬆 
英文關鍵字 Methionine restriction  Endurance exercise  Bone metabolism  Osteoporosis 
學科別分類
中文摘要 目的:本研究探討以甲硫胺酸限制飲食以及耐力運動之介入對切除卵巢大鼠骨骼之代謝、組織型態及生物力學特性的影響。
方法:週齡 35週之雌性Sprague-Dawley (SD) 大鼠分為六組,依照有無去除卵巢 (ovariectomy, Ovx)、飲食中甲硫胺酸 (methionine, M) 兩種含量正常 (0.86%) 和甲硫胺酸限制 (0.172%, MR)、運動訓練 (exercise, Exe) 和雌激素施打 (estrogen, Est) 等介入,將實驗動物分成Sham (偽手術組)、Ovx、Ovx+Exe、Ovx+MR、Ovx+MR+Exe和Ovx+Est 等六組。耐力運動訓練內容為16公尺/分鐘、1小時/天和5天/週 (為期12週) 之跑步訓練,於去除卵巢前兩週開始介入。甲硫胺酸限制飲食在去除卵巢後一週介入,採取自由取食之方式餵食,每週記錄兩天動物之體重與飲食飲水量。動物犧牲後所得之血液與骨骼樣本,分別進行血清骨代謝指標、骨組織型態分析、動態組織學分析和骨組織生物力學特性等變項分析。統計方法以單因子變異數分析 (one-way ANOVA) 或單因子共變數分析 (one-way ANCOVA) 進行組間各變項之考驗,當p< .05時,以LSD方法進行組間事後比較。
結果:經過12週甲硫胺酸限制飲食及耐力運動介入後,Exe及MR在去卵巢引致的體重增加有不同程度的減緩效益。在骨代謝血液指標,Sham組和Ovx+Est組在骨鈣素含量顯著低於其他四組以及在第一型膠原羧基端肽濃度顯著低於Ovx組。在靜態組織學方面,Ovx+Exe組在海綿骨的骨量、骨量比率顯著低於Sham和Ovx+Est組,但另一方面則顯著高於Ovx、Ovx+MR和Ovx+MR+Exe組。兩組MR在骨小樑平均厚度顯著低於Sham、Ovx+Exe和Ovx+Est組。Ovx+Exe組在骨小量數目和連接密度顯著高於Ovx、Ovx+MR和Ovx+MR+Exe組。在骨密度測量方面,Ovx組比其他組別有顯著較低的股骨骨含量。Ovx+Exe和Ovx+MR組比Sham和Ovx+Est組有顯著較高的股骨骨密度。在動態組織學方面,Ovx、Ovx+Exe和Ovx+MR組的次級海綿骨礦化程度顯著高於其他組別。除了Ovx+Exe組,Ovx組在骨內膜礦化程度顯著高於其他組別。除了相對於Ovx組未達顯著外,Ovx+Exe組在骨外膜礦化程度顯著高於其他組別。生物力學特性,Ovx+組在降伏點負荷值、最大負荷值和斷裂負荷值接顯著低於其他組別。
結論:甲硫胺酸限制飲食與運動在保護去卵巢引致之骨流失的功效上,均呈現透過降低骨更新率的機制,而分別對海綿骨或皮質骨有不同的保護效果,其中,耐力運動在抑制去卵巢所引致之骨質缺乏症有較顯著之效果。甲硫胺酸限制飲食在活體試驗為模擬素食飲食之一種模式,本研究未來可進一步在人體實驗上以正常人或更年期婦女為對象,探討低甲硫胺酸之飲食模式對骨代謝和骨品質的影響。
英文摘要 Purpose: To investigate the effects of methionine-restricted diets and endurance exercise on metabolism, histomorphometry and biomaterial properties in bone of ovariectomized rats.
Methods: Females Sprague-Dawley (SD) rats (35-week-old) were body weight matched and assigned to six groups according to methionine (M) content (e.g. 0.86% or 0.17%) in diet, sham or ovariectomy (Ovx) surgery, exercise (Exe) training and estrogen (Est) injection, which were: the (1) Sham, (2) Ovx, (3) Ovx+Exe, (4) Ovx+MR, (5) Ovx+MR+Exe and (6) Ovx+Est groups. Rats in the exercise group were subjected to a 12-week treadmill running training regime (16 m/min, 60 min/day and 5 days/week) started from two weeks before sham or Ovx surgery. Methionine restriction diet was begun 1 week after Ovx surgery. All animals were free access to feed, and body weight and food intake were measured twice per week. After the end of 12-week intervention, all animals were sacrificed under deep anesthesia. Samples of serum and bone were collected and prepared for analyses of serum marker assays, static histomorphometry, dynamic histomorphometry and biomechanical properties. One-way ANOVA or one-way ANCOVA was used for data processing in the current study. Fisher’s least significant difference (LSD) method was used for post hoc comparison when p< .05.
Results: After 12-week experiment period, Exe and MR diet, respectively, showed different efficacies in mitigating ovx-induced body weight gain. In serum bone markers, the Sham and the Ovx+Est groups revealed significantly lower osteocalcin and C-telopeptide fragments of collagen type 1 (CTX-1) levels as compared to the other groups and the Ovx group, respectively. In static histomorphometry, the Ovx+Exe group showed significantly lower bone volume (BV)and bone volume ratio (BV/TV) than the Sham and Ovx+Est groups whereas significantly higher as compared to the Ovx, Ovx+MR and Ovx+MR+Exe groups. In trabecular thickness, two MR groups were significantly lower as compared to the Sham, Ovx+Exe and Ovx+Est groups. The Ovx+Exe group showed significantly higher Tb.N and Conn.Dn. as compared to the Ovx and two MR groups. In densitometry, the Ovx group was significantly lowerer in whole femoral bone mineral content (BMC) value than the other groups. The Ovx+Exe and Ovx+MR groups were significantly higher in whole femoral bone mineral density (BMD) than the Sham and Ovx+Est groups. In dynamic histomorphometry, the Ovx, Ovx+Exe and Ovx+MR groups were significantly higher in mineral surface/bone surface (MS/BS) of secondary spongiosa as compared to the other groups. The Ovx group showed significantly higher MS/BS in endocortical bone surface than all other groups except for the Ovx+Exe group. And, the Ovx+Exe group was significantly higher in periosteal MS/BS than the other groups except for its non-difference to the Ovx group. In biomechanical properties, the Ovx group was significantly lower than the other groups in yield load, max load and fracture load.
Conclusion: MR diet and Exe showed difference efficacies in protecting ovariectomy caused spongy and/or cortical bone loss. And, endurance exercise revealed a more significant efficiency in defending bone from ovx-induced osteopenia. Since MR diet is one of the diet models, which simulates vegan diet in vivo experiment, further studies would be worthy to investigate the effects of MR diet on bone metabolism as well as bone qualities through clinical trials in normal/menopause subjects.
論文目次 摘 要 I
Abstract III
致 謝 V
Table of Contents VI
List of Tables VII
List of Figures VIII
Abbreviations IX
Introduction 1
Operational Definition 4
Materials and Methods 5
Animals 5
Experimental design 5
MR diet 5
Exercise training protocol 7
Ovariectomy surgery 7
Animal sacrifice 7
Blood samples 8
Bone sample collection and measurements 8
Static histomorphometry 9
Dynamic histomorphometry 10
Biomechanical three-point bending testing 11
Statistical analysis 12
Results 13
Discussion 31
Conclusion 33
References 34
參考文獻 Ables, G. P., Perrone, C. E., Orentreich, D., & Orentreich, N. (2012). Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS One, 7(12), e51357.
Barengolts, E. I., Curry, D. J., Bapna, M. S., & Kukreja, S. C. (1993). Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research, 8(8), 937-942.
Barengolts, E. I., Lathon, P. V., Curry, D. J., & Kukreja, S. C. (1994). Effects of endurance exercise on bone histomorphometric parameters in intact and ovariectomized rats. Bone and Mineral, 26(2), 133-140.
Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., & Sigal, R. J. (2001). Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: A meta-analysis of controlled clinical trials. The Journal of the American Medical Association, 286(10), 1218-1227.
Boulé, N. G., Weisnagel, S. J., Lakka, T. A., Tremblay, A., Bergman, R. N., Rankinen, T., et al. (2005). Effects of exercise training on glucose homeostasis: The HERITAGE family study. Diabetes Care, 28(1), 108-114.
Byers, T., Nestle, M., McTiernan, A., Doyle, C., Currie-Williams, A., Gansler, T., et al. (2002). American Cancer Society guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA: A Cancer Journal for Clinicians, 52(2), 92-119.
Carter, D. R., & Hayes, W. C. (1977). The compressive behavior of bone as a two-phase porous structure. The Journal of Bone and Joint Surgery. American Volume, 59(7), 954-962.
Cenci, S., Toraldo, G., Weitzmann, M. N., Roggia, C., Gao, Y., Qian, W. P., et al. (2003). Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10405-10410.
Cerri, P. S., Boabaid, F., & Katchburian, E. (2003). Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. Journal of Periodontal Research, 38(2), 223-226.
Chang, H. W. (2011). The Effects of Endurance Training and Low-Methionine Diets on Skeletal Muscle:The Associations among insulin/IGF-1 Axis, Aerobic Metabolism and Oxidative Stress. Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University.
Chen, J. L., Yao, W., Frost, H. M., Li, C. Y., Setterberg, R. B., & Jee, W. S. S. (2001). Bipedal stance exercise enhances antiresorption effects of estrogen and counteracts its inhibitory effect on bone formation in sham and ovariectomized rats. Bone, 29(2), 126-133.
Chen, M. M., Yeh, J. K., Aloia, J. F., Tierney, J. M., & Sprintz, S. (1994). Effect of treadmill exercise on tibial cortical bone in aged female rats: A histomorphometry and dual energy X-ray absorptiometry study. Bone, 15(3), 313-319.
Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4-7.
Danielsen, C., Mosekilde, L., & Svenstrup, B. (1993). Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcified Tissue International, 52(1), 26-33.
Ebbesen, E. N., Thomsen, J. S., Beck-Nielsen, H., Nepper-Rasmussen, H. J., & Mosekilde, L. (1999). Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone, 25(6), 713-724.
Eriksen, E. F., Langdahl, B., Vesterby, A., Rungby, J., & Kassem, M. (1999). Hormone replacement therapy prevents osteoclastic hyperactivity: A histomorphometric study in early postmenopausal women. Journal of Bone and Mineral Research, 14(7), 1217-1221.
Fallon, K. E., Fallon, S. K., & Boston, T. (2001). The acute phase response and exercise: court and field sports. British Journal of Sports Medicine, 35(3), 170-173.
Fuller, K., Murphy, C., Kirstein, B., Fox, S. W., & Chambers, T. J. (2002). TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology, 143(3), 1108-1118.
Honda, A., Sogo, N., Nagasawa, S., Shimizu, T., & Umemura, Y. (2003). High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. Journal of Applied Physiology, 95(3), 1032-1037.
Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. Journal of Bone and Mineral Metabolism, 26(4), 350-357.
Huang, T. H., Hsieh, S. S., Liu, S. H., Chang, F. L., Lin, S. C., & Yang, R. S. (2010). Swimming training increases the post-yield energy of bone in young male rats. Calcified Tissue International, 86(2), 142-153.
Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. Journal of Applied Physiology, 95(1), 300-307.
Hughes, D. E., Dai, A., Tiffee, J. C., Li, H. H., Mundy, G. R., & Boyce, B. F. (1996). Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nature Medicine, 2(10), 1132-1136.
Iwamoto, J., Takeda, T., & Ichimura, S. (1998). Effect of exercise on tibial and lumbar vertebral bone mass in mature osteopenic rats: Bone histomorphometry study. Journal of Orthopaedic Science, 3(5), 257-263.
Joo, Y. I., Sone, T., Fukunaga, M., Lim, S. G., & Onodera, S. (2003). Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone, 33(4), 485-493.
Kim, J. H., Kwak, H. B., Leeuwenburgh, C., & Lawler, J. M. (2008). Lifelong exercise and mild (8%) caloric restriction attenuate age-induced alterations in plantaris muscle morphology, oxidative stress and IGF-1 in the Fischer-344 rat. Experimental Gerontology, 43(4), 317-329.
Krajcovicová-Kudlácková, M., Blazícek, P., Kopcová, J., Béderová, A., & Babinská, K. (2000). Homocysteine levels in vegetarians versus omnivores. Annals of Nutrition & Metabolism, 44(3), 135-138.
Levin, B. E., & Dunn-Meynell, A. A. (2004). Chronic exercise lowers the defended body weight gain and adiposity in diet-induced obese rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 286(4), R771-778.
Libby, P. (2002). Inflammation and atherosclerosis. Circulation, 105(9), 1135-1143.
Malloy, V. L., Krajcik, R. A., Bailey, S. J., Hristopoulos, G., Plummer, J. D., & Orentreich, N. (2006). Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell, 5(4), 305-314.
Martyn-St James, M., & Carroll, S. (2008). Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone, 43(3), 521-531.
Mattusch, F., Dufaux, B., Heine, O., Mertens, I., & Rost, R. (2000). Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. International Journal of Sports Medicine, 21(01), 21-24.
Miller, R., Buehner, G., Chang, Y., Harper, J., Sigler, R., & Smith Wheelock, M. (2005). Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell, 4(3), 119-125.
Moraes-Silva, I. C., Mostarda, C., Moreira, E. D., Silva, K. A. S., dos Santos, F., de Angelis, K., et al. (2013). Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development. Journal of Applied Physiology, 114(6), 786-791.
Namkung-Matthai, H., Appleyard, R., Jansen, J., Hao Lin, J., Maastricht, S., Swain, M., et al. (2001). Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone, 28(1), 80-86.
Nanes, M. S. (2003). Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene, 321(4), 1-15.
Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., et al. (1987). Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee. Journal of Bone and Mineral Research, 2(6), 595-610.
Perrone, C. E., Malloy, V. L., Orentreich, D. S., & Orentreich, N. (2013). Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents. Experimental Gerontology, 48(7), 654-660.
Richie, J. P., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., & Zimmerman, J. A. (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. The Journal of the Federation of American Societies for Experimental Biology, 8(15), 1302-1307.
Rodnick, K. J., Holloszy, J. O., Mondon, C. E., & James, D. E. (1990). Effects of Exercise Training on Insulin-Regulatable Glucose-Transporter Protein Levels in Rat Skeletal Muscle. Diabetes, 39(11), 1425-1429.
Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., & Barja, G. (2006). Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. The Journal of the Federation of American Societies for Experimental Biology, 20(8), 1064-1073.
Sanz, A., Caro, P., & Barja, G. (2004). Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. Journal of Bioenergetics and Biomembranes, 36(6), 545-552.
Sellmeyer, D. E., Stone, K. L., Sebastian, A., Cummings, S. R., & Group, f. t. S. o. O. F. R. (2001). A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. The American Journal of Clinical Nutrition, 73(1), 118-122.
Shibata, Y., Ohsawa, I., Watanabe, T., Miura, T., & Sato, Y. (2003). Effects of physical training on bone mineral density and bone metabolism. Journal of Physiological Anthropology and Applied Human Science, 22(4), 203-208.
Srivastava, S., Toraldo, G., Weitzmann, M. N., Cenci, S., Ross, F. P., & Pacifici, R. (2001). Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. Journal of Biological Chemistry, 276(12), 8836-8840.
Sun, L., Sadighi Akha, A. A., Miller, R. A., & Harper, J. M. (2009). Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(7), 711-722.
Takenaka, A., Oki, N., Takahashi, S. I., & Noguchi, T. (2000). Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 in rats. The Journal of Nutrition, 130(12), 2910-2914.
Tatsumi, S., Ito, M., Asaba, Y., Tsutsumi, K., & Ikeda, K. (2008). Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology, 149(2), 634-641.
Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608.
van de Poll, M. C., Dejong, C. H., & Soeters, P. B. (2006). Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutrition. The Journal of Nutrition, 136(6), 1694S-1700S.
Weindruch, R., & Sohal, R. S. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. The New England Journal of Medicine, 337(14), 986-994.
Weitzmann, M. N., & Pacifici, R. (2006). Estrogen deficiency and bone loss: an inflammatory tale. Journal of Clinical Investigation, 116(5), 1186-1194.
Weitzmann, M. N., Roggia, C., Toraldo, G., Weitzmann, L., & Pacifici, R. (2002). Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. Journal of Clinical Investigation, 110(11), 1643-1650.
Wronski, T. J., Cintron, M., & Dann, L. M. (1988). Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcified Tissue International, 43(3), 179-183.
Yeh, J. K., Aloia, J. F., & Barilla, M.-L. (1994). Effects of 17β-estradiol replacement and treadmill exercise on vertebral and femoral bones of the ovariectomized rat. Bone and Mineral, 24(3), 223-234.
Yeh, J. K., Aloia, J. F., Chen, M. M., Tierney, J. M., & Sprintz, S. (1993). Influence of exercise on cancellous bone of the aged female rat. Journal of Bone and Mineral Research, 8(9), 1117-1125.
Yeh, J. K., Liu, C. C., Aloia, J. F., & Foto, A. (1991). Effect of treadmill exercise and ovariectomy on femoral and lumbar vertebrae in young and adult rats. Cells and Materials, 1, 159-159.
Zimmerman, J. A., Malloy, V., Krajcik, R., & Orentreich, N. (2003). Nutritional control of aging. Experimental Gerontology, 38(1-2), 47-52.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw