進階搜尋


下載電子全文  
系統識別號 U0026-2408201222330600
論文名稱(中文) 氧化鈣/矽藻土複合物於二氧化碳吸附之研究
論文名稱(英文) The study of CaO/diatomite composites in CO2 adsorption
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 林琪家
研究生(英文) Chi-Chia Lin
學號 L46991029
學位類別 碩士
語文別 中文
論文頁數 141頁
口試委員 指導教授-陳燕華
口試委員-江威德
口試委員-鄧熙聖
口試委員-鄧茂華
中文關鍵字 氧化鈣  矽藻土  改質  複合物  二氧化碳  吸附 
英文關鍵字 Calcium oxide  diatomite  modification  composite  carbon dioxide  adsorption 
學科別分類
中文摘要 由於氧化鈣擁有優異的CO2吸附量,成為具有潛力的CO2吸附材,然而在吸/脫附的重複再生過程中,氧化鈣會產生燒結的現象,並影響吸附作用的進行,為了增加循環利用次數,我們預期將氧化鈣與矽藻土予以複合以隔離氧化鈣顆粒間的燒結作用。矽藻土是一種多孔物質,擁有高比表面積、表面負電性、多孔洞結構等特性,並能藉由化學改質增加其孔隙度。本研究將矽藻土分別浸泡於氫氧化鈉、鹽酸與硫酸溶液中,藉由侵蝕矽藻土的表面與裂縫,提升矽藻土的比表面積與孔隙率,並利用掃描式電子顯微鏡、比表面積分析儀與X光繞射儀分析樣品形貌、孔洞以及晶體結構的變化。硫酸改質矽藻土在配置濃度1.0 M、活化時間24小時,溶液溫度75℃及攪拌500 rpm轉速可得到最佳改質效果。氧化鈣與改質矽藻土以100/0、95/5、75/25、55/45與35/65之莫爾比例做複合,並以熱重-熱差分析儀對複合物進行CO2吸附實驗,測量CO2吸附量以及多次循環利用性能,並藉由CO2吸附前後的特性分析以瞭解吸附機制。實驗結果顯示:CaO-100與CaO-95具有較佳的CO2吸附效率,且CaO-95擁有對CO2吸附時較佳的循環利用性(穩定性);然而由於矽藻土與氧化鈣之間的化學反應,促進矽酸鈣的產生並消耗複合物中氧化鈣的含量,使得其它複合物對CO2吸附量的穩定性下降。
英文摘要 The calcium oxide is a potential CO2 sorbent due to its great CO2 adsorption capacity. However, the surface area and porosity of CaO are eliminated by the sintering effect during the sorption/desorption process, then the adsorption capacity and the stability would be declined. To overcome these drawbacks, CaO is combined with the diatomite to cease the side-effect of sintering. Diatomite is a porous material with high specific surface area, surface electronegativity, and high porosity. Moreover, the surface area and porosity could be enhanced by chemical modification. In this study, diatomite is modified by NaOH, HCl, H2SO4 solutions to corrode the surface structure, and promote its specific surface area and porosity. Then the modified-diatomite is analyzed by using scanning electron microscope, surface area and porosity analyzer and X-ray diffractometer to observe the morphology, porosity, and crystalline structure, respectively. The best modified condition is that diatomite with H2SO4 modification having concentration of 1.0M, reaction time of 24hr, stirring at 500rpm at 75℃. And then CaO and modified-diatomite is combined with molar ratio of 100/0, 95/5, 75/25, 55/45 and 35/65. The CO2 adsorption capacity and efficiency is examined by the thermo-gravimetric analyzer. The CO2 adsorption mechanism via the property analysis before and after CO2 adsorption is also discussed. The results show that the samples of CaO-100 and CaO-95 have a better CO2 adsorption efficiency, and the sample of CaO-95 has the best CO2 adsorption stability. However, the chemical reaction between diatomite and CaO results in the formation of calcium silicate and decline the amount of CaO in the composite. This leads to the composite having a lower stability of CO2 adsorption/desorption processes.
論文目次 目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第 1 章 緒論 1
第 2 章 背景資料 4
2.1空氣污染源 4
2.1.1空氣污染簡介 4
2.1.2 二氧化碳捕獲與封存 7
2.1.3 氧化鈣吸附劑之用途 8
2.2材料簡介 11
2.2.1氧化鈣 11
2.2.2矽藻土 18
2.3氣體吸附簡介 22
2.3.1吸附劑歷史 22
2.3.2吸附理論 22
2.3.3物理/化學吸附 26
2.3.4吸附因素 27
2.3.5脫附理論 30
第 3 章 研究方法 32
3.1實驗流程 32
3.2實驗設備及藥品 34
3.3樣品處理 36
3.3.1矽藻土之改質 36
3.3.2氧化鈣/改質矽藻土複合物之合成 37
3.4分析儀器 41
3.4.1比表面積及孔徑分析儀(BET) 41
3.4.2 X光繞射儀(XRD) 45
3.4.3掃描式電子顯微鏡(SEM) 47
3.4.4熱重-熱差分析儀(TG-DTA) 48
第 4 章 研究成果與討論 50
4.1原始矽藻土之成份分析 50
4.2改質矽藻土之分析與比較 54
4.2.1改質矽藻土之比表面積與孔隙分析 54
4.2.2掃描式電子顯微鏡之結果 72
4.2.3 X光繞射之結果 75
4.2.4矽藻土改質小結 77
4.3氧化鈣/改質矽藻土複合物之分析 79
4.3.1比表面積與孔隙分佈 79
4.3.2碳化前特性分析 81
4.3.3 TG-DTA之CO2吸附測試 89
4.3.4碳化後之特性分析 105
4.4吸附機制之探討 113
第 5 章 總結 122
5.1結論 122
5.2建議 124
參考文獻 125
附錄 132

圖目錄
圖2-1、各國每年二氧化碳排放之情況(Carbon Dioxide Information Analysis Center)。 5
圖2-2、二氧化碳封存與捕捉之示意圖。 7
圖2-3、氧化鈣孔隙度與二氧化碳吸附之關係。 12
圖2-4、兩球燒結模型(Two-sphere sintering model)。 13
圖2-5、圓筒狀矽藻之形貌。 18
圖2-6、矽藻土表面之官能基。 19
圖3-1、實驗流程圖。 33
圖3-2、矽藻土改質之流程圖。 39
圖3-3、氧化鈣/改質矽藻土複合物合成之流程圖。 40
圖3-4、等溫吸附曲線。 42
圖3-5、遲滯曲線。 44
圖3-6、布拉格繞射示意圖。 46
圖3-7、電子躍遷產生特徵X光之示意圖。 47
圖4-1、原始矽藻土之元素分佈圖。 52
圖4-2、原始矽藻土之等溫吸附曲線。 55
圖4-3、孔徑分佈範圍 (a) Original、(b) D-NaOH、(c) D-HCl、(d) D-H2SO4。 71
圖4-4、100nm孔徑分佈範圍 (a) Original、(b) D-NaOH、(c) D-HCl、(d) D-H2SO4。 71
圖4-5、原始矽藻土之表面形貌(a) x500;(b) x5000。 73
圖4-6、D-NaOH之表面形貌(a) x500;(b) x5000。 73
圖4-7、D-HCl之表面形貌(a) x500;(b) x5000。 74
圖4-8、D- H2SO4之表面形貌(a) x500;(b) x5000。 74
圖4-9、原始、改質矽藻土之XRD分析圖譜。 76
圖4-10、元素相對含量 (a) CaO-95 (b) CaO-75 (c) CaO-55 (d) CaO-35。 81
圖4-11、CaO-100之表面形貌(a) x500;(b) x2000。 83
圖4-12、CaO-95之表面形貌(a) x500;(b) x2000。 83
圖4-13、CaO-75之表面形貌(a) x500;(b) x2000。 84
圖4-14、CaO-55之表面形貌(a) x500;(b) x2000。 84
圖4-15、CaO-35之表面形貌(a) x500;(b) x2000。 85
圖4-16、D-H2SO4之表面形貌(a) x500;(b) x2000。 85
圖4-17、矽藻土塊體之比較。 86
圖4-18、氧化鈣/改質矽藻土之XRD 圖譜。 88
圖4-19、CO2單循環吸附之流程(This study)。 90
圖4-20、CaO-100於不同溫度下之吸附量。 92
圖4-21、各樣品在750℃下進行1小時CO2吸附之吸附量比較100% CO2 (30ml)。 94
圖4-22、CO2多循環吸附之流程。 96
圖4-23、CaO100/實驗級CaO粉末之比較 (a)吸附量;(b)Ratio值。 99
圖4-24、CaO100/95之比較 (a)吸附量;(b)Ratio值。 100
圖4-25、CaO100/75之比較 (a)吸附量;(b)Ratio值。 101
圖4-26、CaO100/55之比較 (a)吸附量;(b)Ratio值。 102
圖4-27、CaO100/35之比較 (a)吸附量;(b)Ratio值。 103
圖4-28、CaO-100之多循環吸附後的形貌(a) x500;(b) x2000。 107
圖4-29、CaO-95之多循環吸附後的形貌(a) x500;(b) x2000。 107
圖4-30、CaO-75之多循環吸附後的形貌(a) x500;(b) x2000。 108
圖4-31、CaO-55之多循環吸附後的形貌(a) x500;(b) x2000。 108
圖4-32、CaO-35之多循環吸附後的形貌(a) x500;(b) x2000。 109
圖4-33、多循環吸附後之XRD圖譜(未脫附)。 111
圖4-34、原始氧化鈣之燒結示意圖。 115
圖4-35、理想的改質氧化鈣之燒結示意圖。 115
圖4-36、本研究理想的氧化鈣/改質矽藻土之燒結示意圖。 116
圖4-37、實際上氧化鈣/改質矽藻土之燒結示意圖。 117

附圖1、NaOH改質, 活化溫度60℃, 持溫時間1hr, 100rpm (a) 0.5M;(b) 1.0M;(c) 1.5M;(d) 2.0M;(e) 2.5M;(f) 3.0M。 132
附圖2、NaOH改質, 濃度2.5M, 持溫時間1hr, 100rpm (a) 40℃;(b) 60℃;(c) 80℃;(d) 100℃。 133
附圖3、NaOH改質, 活化溫度60℃, 濃度2.5M, 100rpm 134
附圖4、HCl改質, 室溫環境, 持溫時間1hr, 100rpm (a) 1.0M;(b) 3.0M;(c) 5.0M。 135
附圖5、HCl改質, 室溫環境, 濃度1.0M, 100rpm(a) 1hr;(b) 12hr;(c) 24hr。 135
附圖6、HCl改質, 活化溫度60℃, 濃度1.0M, 100rpm (a) 1hr;(b) 12hr;(c) 24hr;(d) 48hr。 136
附圖7、HCl改質, 活化溫度60℃, 持溫時間24hr, 100rpm (a) 1.0M;(b) 3.0M;(c) 5.0M。 137
附圖8、H2SO4改質, 活化溫度60℃, 濃度1.0M, 100rpm (a) 1hr;(b) 12hr;(c) 24hr;(d) 36hr;(e) 48hr。 138
附圖9、H2SO4改質, 活化溫度60℃, 持溫時間24hr, 100rpm (a) 1.0M;(b) 3.0M;(c) 5.0M。 139
附圖10、H2SO4改質, 濃度1.0M, 持溫時間24hr, 100rpm (a) 45℃;(b) 60℃;(c) 75℃。 139
附圖11、H2SO4改質, 濃度1.0M, 活化溫度75℃, 持溫時間24hr (a) 100rpm;(b) 300rpm;(c) 500rpm。 140


表目錄
表2-1、CO2吸附劑之比較。 10
表2-2、改質氧化鈣之比較。 17
表2-3、改質矽藻土之比較。 21
表3-1、樣品代號。 38
表3-2、等溫吸附曲線與孔徑、作用力的關係。 42
表3-3、CO2單循環吸附之參數。 49
表3-4、CO2多循環吸附之參數。 49
表4-1、本研究矽藻土之元素含量(Mg以上的元素)。 53
表4-2、原始矽藻土之BET分析。 55
表4-3、1.0 M鹽酸前處理之BET分析。 56
表4-4、NaOH改質, 活化溫度60℃, 持溫時間1hr, 100rpm之BET分析。57
表4-5、NaOH改質, 濃度2.5M, 持溫時間1hr, 100rpm之BET分析。 59
表4-6、NaOH改質, 活化溫度60℃, 濃度2.5M, 100rpm之BET分析。 60
表4-7、HCl改質, 室溫環境, 持溫時間1hr, 100rpm之BET分析。 61
表4-8、HCl改質, 室溫環境, 濃度1.0M, 100rpm之BET分析。 62
表4-9、HCl改質, 活化溫度60℃, 濃度1.0M, 100rpm之BET分析。 63
表4-10、HCl改質, 活化溫度60℃, 持溫時間24hr, 100rpm之BET分析。63
表4-11、H2SO4改質, 活化溫度60℃, 濃度1.0M, 100rpm之BET分析。65
表4-12、H2SO4改質, 活化溫度60℃, 持溫時間24hr, 100rpm之BET分析。66
表4-13、H2SO4改質, 濃度1.0M, 持溫時間24hr, 100rpm之BET分析。67
表4-14、H2SO4改質, 濃度1.0M, 活化溫度75℃, 持溫時間24hr之BET分析。 67
表4-15、氫氧化鈉、鹽酸、硫酸最佳改質之BET分析。 70
表4-16、化學改質矽藻土之比較。 78
表4-17、氧化鈣/改質矽藻土之BET分析。 80
表4-18、氧化鈣/原始矽藻土之BET分析。 80
表4-19、碳酸化反應於不同溫度下之平衡常數。 92
表4-20、CaO系列之吸附量、劣化程度比較。 104
表4-21、高溫煆燒D-H2SO4之BET分析。 106
表4-22、CaO-100於多循環吸附前後之晶粒尺寸變化。 110
表4-23、惰性物質添加之比較。 120
表4-24、高比表面積惰性物質之比較。 121
附表1、原始矽藻土之微孔洞分析。 141


參考文獻 Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., and Idem, R., 'Kinetics of the Reactive Absorption of Carbon Dioxide in High CO2-Loaded, Concentrated Aqueous Monoethanolamine Solutions', Chemical Engineering Science, 58 (2003) 5195-5210.

Aihara, M., Nagai, T., Matsushita, J., Negishi, Y., and Ohya, H., 'Development of Porous Solid Reactant for Thermal-Energy Storage and Temperature Upgrade Using Carbonation/Decarbonation Reaction', Applied Energy, 69 (2001) 225-238.

Aivalioti, M., Papoulias, P., Kousaiti, A., and Gidarakos, E., 'Adsorption of Btex, Mtbe and Tame on Natural and Modified Diatomite', Journal of Hazardous Materials, 207 (2012) 117-127.

Alvarez, D., and Abanades, J. C., 'Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2', Industrial & Engineering Chemistry Research, 44 (2005) 5608-5615.

Barker, R., 'Reactivity of Calcium-Oxide Towards Carbon-Dioxide and Its Use for Energy-Storage', Journal of Applied Chemistry and Biotechnology, 24 (1974) 221-227.

Barker, R., 'The Reversibility of the Reaction CaCO3 ↔CaO+ CO2', Journal of Applied Chemistry and Biotechnology, 23 (1973) 733-742.

Barrett, E. P., Joyner, L. G., and Halenda, P. P., 'The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms', Journal of the American Chemical Society, 73 (1951) 373-380.

Blamey, J., Anthony, E. J., Wang, J., and Fennell, P. S., 'The Calcium Looping Cycle for Large-Scale CO2 Capture', Progress in Energy and Combustion Science, 36 (2010) 260-279.


Boonpoke, A., Chiarakorn, S., Laosiripojana, N., Towprayoon, S., and Chidthaisong, A., 'Investigation of CO2 Adsorption by Bagasse-Based Activated Carbon', Korean Journal of Chemical Engineering, 29 (2012) 89-94.

Borgwardt, R. H., 'Sintering of Nascent Calcium-Oxide', Chemical Engineering Science, 44 (1989) 53-60.

Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., Biniwale, R. B., Labhsetwar, N. K., and Rayalu, S. S., 'Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies', Microporous and Mesoporous Materials, 121 (2009) 84-89.

Chen, M., Wang, N., Yu, J., and Yamaguchi, A., 'Effect of Porosity on Carbonation and Hydration Resistance of CaO Materials', Journal of the European Ceramic Society, 27 (2007) 1953-1959.

Dang, H. Y., and Rochelle, G. T., ' CO2 Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water', Separation Science and Technology, 38 (2003) 337-357.

Everest, D. A., 'The Greenhouse-Effect - Issues for Policymakers', Energy Policy, 17 (1989) 177-181.

Feng, B., Liu, W. Q., Li, X., and An, H., 'Overcoming the Problem of Loss-in-Capacity of Calcium Oxide in CO2 Capture', Energy & Fuels, 20 (2006) 2417-2420.

German, R. M., and Munir, Z. A., 'Surface-Area Reduction During Isothermal Sintering', Journal of the American Ceramic Society, 59 (1976) 379-383.

Granite, E. J., 'Review of Novel Methods for Carbon Dioxide Separation from Flue and Fuel Gases', Abstracts of Papers of the American Chemical Society, 227 (2004) U1085-U1085.

Grasa, G. S., and Abanades, J. C., ' CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles', Industrial & Engineering Chemistry Research, 45 (2006) 8846-8851.

Guo, Z., and Tan, L., 'Fundamentals and Applications of Nanomaterials', Artech House , 2009.

Gupta, H., and Fan, L. S., 'Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas', Industrial & Engineering Chemistry Research, 41 (2002) 4035-4042.

Horiuchi, T., Hidaka, H., Fukui, T., Kubo, Y., Horio, M., Suzuki, K., and Mori, T., 'Effect of Added Basic Metal Oxides on CO2 Adsorption on Alumina at Elevated Temperatures', Applied Catalysis a-General, 167 (1998) 195-202.

Huang, C. H., Chang, K. P., Yu, C. T., Chiang, P. C., and Wang, C. F., 'Development of High-Temperature CO2 Sorbents Made of CaO-Based Mesoporous Silica', Chemical Engineering Journal, 161 (2010) 129-135.

Jia, Y. X., Han, W., Xiong, G. X., and Yang, W. S., 'Layer-by-Layer Assembly of TiO2 Colloids onto Diatomite to Build Hierarchical Porous Materials', Journal of Colloid and Interface Science, 323 (2008) 326-331.

Johnsen, K., Ryu, H. J., Grace, J. R., and Lim, C. J., 'Sorption-Enhanced Steam Reforming of Methane in a Fluidized Bed Reactor with Dolomite as CO2-Acceptor', Chemical Engineering Science, 61 (2006) 1195-1202.

Kato, Y., Saku, D., Harada, N., and Yoshizawa, Y., 'Utilization of High Temperature Heat Using a Calcium Oxide Lead Oxide Carbon Dioxide Chemical Heat Pump', Journal of Chemical Engineering of Japan, 30 (1997) 1013-1019.

Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., and Ahmad, M. N., 'Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite', Water Research, 39 (2005) 922-932.

Korunic, Z., 'Diatomaceous Earths, a Group of Natural Insecticides', Journal of Stored Products Research, 34 (1998) 87-97.

Larry D. B., Joseph F. J., and Barron L. W., 'Process chemistry for water and wastewater treatment', Prentice-Hall, Englewood Cliffs, N.J, 1982.

Li, Z. S., Cai, N. S., and Croiset, E., 'Process Analysis of CO2 Capture from Flue Gas Using Carbonation/Calcination Cycles', Aiche Journal, 54 (2008) 1912-1925.

Li, Z. S., Cai, N. S., and Huang, Y. Y., 'Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based CO2 Sorbent', Industrial & Engineering Chemistry Research, 45 (2006) 1911-1917.

Li, Z. S., Cai, N. S., Huang, Y. Y., and Han, H. J., 'Synthesis, Experimental Studies, and Analysis of a New Calcium-Based Carbon Dioxide Absorbent', Energy & Fuels, 19 (2005) 1447-1452.

Liu, S. H., Wu, C. H., Lee, H. K., and Liu, S. B., 'Highly Stable Amine-Modified Mesoporous Silica Materials for Efficient CO2 Capture', Topics in Catalysis, 53 (2010) 210-217.

Liu, W., Low, N. W., Feng, B., Wang, G., and Diniz da Costa, J. C., 'Calcium Precursors for the Production of CaO Sorbents for Multicycle CO2 Capture', Environmental Science & Technology, 44 (2010) 841-847.

Luo, C., Zheng, Y., Ding, N., and Zheng, C. G., 'Enhanced Cyclic Stability of CO2 Adsorption Capacity of CaO-Based Sorbents Using La2O3 or Ca12Al14O33 as Additives', Korean Journal of Chemical Engineering, 28 (2011) 1042-1046.

Lysikov, A. I., Salanov, A. N., and Okunev, A. G., 'Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation-Decomposition Cycles', Industrial & Engineering Chemistry Research, 46 (2007) 4633-4638.

Maitra, S. , Chakrabarty, N. , and Pramanik, J. , 'Decomposition Kinetics of Alkaline Earth Carbonates by Integral Approximation Method', Cerâmica, 54 (2008) 268-272.

Manovic, V., and Anthony, E. J., 'Screening of Binders for Pelletization of CaO-Based Sorbents for CO2 Capture', Energy & Fuels, 23 (2009) 4797-4804.

Manovic, V., and Anthony, E. J., 'Steam Reactivation of Spent CaO-Based Sorbent for Multiple CO2 Capture Cycles', Environmental Science & Technology, 41 (2007) 1420-1425.
Martavaltzi, C. S., and Lemonidou, A. A., 'Development of New CaO Based Sorbent Materials for CO2 Removal at High Temperature', Microporous and Mesoporous Materials, 110 (2008) 119-127.

Metz, B., Davidson, O., Coninck, H. d., Loos, M., and Meyer, L., (IPCC) 'Carbon Dioxide Capture and Storage', Cambridge University Press, 2005.

Nenadovic, S., Nenadovic, M., Kovacevic, R., Matovic, L., Matovic, B., Jovanovic, Z., and Novakovic, J. G., 'Influence of Diatomite Microstructure on Its Adsorption Capacity for Pb(II)', Science of Sintering, 41 (2009) 309-317.

Rao, A. B., and Rubin, E. S., 'A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control', Environmental Science & Technology, 36 (2002) 4467-4475.

Ruthven, D. M., 'Principles of Adsorption and Adsorption Process', John Wiley&Sons, New York, 1984.

Salvador, C., Lu, D., Anthony, E. J., and Abanades, J. C., 'Enhancement of CaO for CO2 Capture in an Fbc Environment', Chemical Engineering Journal, 96 (2003) 187-195.

San, O., Goren, R., and Ozgur, C., 'Purification of Diatomite Powder by Acid Leaching for Use in Fabrication of Porous Ceramics', International Journal of Mineral Processing, 93 (2009) 6-10.

Santos, E. T., Alfonsin, C., Chambel, A. J. S., Fernandes, A., Dias, A. P. S., Pinheiro, C. I. C., and Ribeiro, M. F., 'Investigation of a Stable Synthetic Sol-Gel CaO Sorbent for CO2 Capture', Fuel, 94 (2012) 624-628.

Schaffer J. P., Saxena A., Antolovich S.D., Sanders T.H., and Warner S.B., 'The Science and Design of Engineering Materials', 2nd Edition, Richard D Irwin, 1995.

Schulz, K. G., Ramos, J. B. E., Zeebe, R. E., and Riebesell, U., ' CO2 Perturbation Experiments: Similarities and Differences between Dissolved Inorganic Carbon and Total Alkalinity Manipulations', Biogeosciences, 6 (2009) 2145-2153.

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., 'Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984)', Pure and Applied Chemistry, 57 (1985) 603-619.

Tsai, W. T., Hsien, K. J., and Lai, C. W., 'Chemical Activation of Spent Diatomaceous Earth by Alkaline Etching in the Preparation of Mesoporous Adsorbents', Industrial & Engineering Chemistry Research, 43 (2004) 7513-7520.

Tsai, W. T., Hsien, K. J., and Yang, J. M., 'Silica Adsorbent Prepared from Spent Diatomaceous Earth and Its Application to Removal of Dye from Aqueous Solution', Journal of Colloid and Interface Science, 275 (2004) 428-433.

Tsai, W. T., Lai, C. W., and Hsien, K. J., 'Characterization and Adsorption Properties of Diatomaceous Earth Modified by Hydrofluoric Acid Etching', Journal of Colloid and Interface Science, 297 (2006) 749-754.

Wang, K., Guo, X., Zhao, P. F., and Zheng, C. G., 'Cyclic CO2 Capture of CaO-Based Sorbent in the Presence of Metakaolin and Aluminum (Hydr)Oxides', Applied Clay Science, 50 (2010) 41-46.

Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., 'Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor', Industrial & Engineering Chemistry Research, 46 (2007) 7896-7899.

Wu, S. F., Li, Q. H., Kim, J. N., and Yi, K. B., 'Properties of a Nano CaO/Al2O3 CO2 Sorbent', Industrial & Engineering Chemistry Research, 47 (2008) 180-184.

Yang, R. T., 'Gas Separation by Adsorption Process, Butterworth', New York, 1987.

Xu, J. G., and Froment, G. F., 'Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics', Aiche Journal, 35 (1989) 88-96.

Zhuravlev, L. T., 'The Surface Chemistry of Amorphous Silica. Zhuravlev Model', Colloids and Surfaces a-Physicochemical and Engineering Aspects, 173 (2000) 1-38.



余慶聰、邱耀平 (2009),氧化鈣系奈米材料於中高溫二氧化碳捕捉技術之研究,化學,第六十七卷,第二期,頁189-197

汪建民 (1998),材料科學導論,中國材料學會出刊,新竹市,頁47-72/124-148。

吳煌譯著 (1984),吸附、吸收、萃取操作之選擇與節約能源,經濟部能源委員會,頁21-22/28。

李馥安 (2010),奈米氧化鐵礦物之合成與基礎特性研究,國立成功大學,地球科學學系碩士論文。

吳麗詩(2005),疏水性沸石對單成分與雙成分揮發性有機物吸附機制之研究,國立雲林科技大學,環境與安全衛生工程系碩士論文。

曹惠玲 (2006),改質矽藻土對水中重金屬吸附特性之研究,國立成功大學,環境工程學系碩士論文。

望熙榮譯著(1998),空氣汙染防制,圖書出版社,台北市,頁1-63/293-306/345-372。

許欣潔 (2007),沸石吸附材料製備及其運用於水中汙染物之去除,嘉南藥理科技大學,環境工程與科學系碩士論文。

黃正義、陳王琨(1997),空氣汙染防制學,淑馨出版社,台北市,頁281-302。

蔡文田 (2004) ,pH值和鹽度對矽藻土界達電位(ξ-potential)及陽離子交換容量(CEC之影響,嘉南藥理科技大學,專題研究計畫成果報告。

陳奕岑 (2008),以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究,國立交通大學,環境工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw