進階搜尋


 
系統識別號 U0026-2408201214405500
論文名稱(中文) 建構超音波彈性影像系統評估生物組織之力學特性
論文名稱(英文) Development of an Ultrasonic Elastography System for Assessing the Mechanical Properties of Biological Tissues
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 康瓈今
研究生(英文) Li-Jin Kang
學號 p86994141
學位類別 碩士
語文別 英文
論文頁數 49頁
口試委員 指導教授-陳天送
口試委員-陳家進
口試委員-陳培展
口試委員-陳永福
口試委員-陳世中
中文關鍵字 超音波影像系統  交互相關  彈性模數  應變 
英文關鍵字 Elastography  Cross-Correlation  Elastic modulus  Strain 
學科別分類
中文摘要 許多的病理改變常會伴隨著組織的彈性改變。一般在臨床上均以徒手觸診的方式對組織的病理及剛度變化做診斷。但是觸診完全依賴醫生的經驗,無法量化組織內部的彈性情形。近幾年來,組織彈性影像的研究進步,在臨床上紛紛出現,代替傳統的徒手觸診,提供醫生更加客觀且正確的彈性資訊供做為診斷參考。
本研究已建立一套超音波影像系統來對生物組織的彈性做評估。利用壓力感測器、5MHz的超音波探頭結合兩單軸步進馬達對組織進行掃描以及向下壓縮,利用交互相關(cross-correlation)技術評估超音波回波訊號在壓縮前後的訊號位移,來計算出物體的彈性模數以及內部的應變分佈。
本實驗利用自製的超音波假體和豬肉組織來進行驗證,結果顯示本系統可以有效地分辨出物體內部的彈性差異,顯示出在傳統B-mode上無法得知的物體彈性資訊,提高對影像的鑑別能力。當對物體的壓縮程度越大更可以提高應變訊號的訊雜比。
但以傳統的交互相關技術分析,因散射粒子的位移使波產生變形或是疊合,出現訊號去相關(decorrelation)的情形。本實驗使用的方式可以降低互相關的雜訊干擾,需依賴介面的回波訊號進行分析。若是在B-mode中無法清楚的觀察到組織的分層情況,就無法進行正確的彈性評估。如果可以消除去相關的干擾,就可以正確地以交互相關的方式對生物組織進行彈性量測。
英文摘要 In clinics, the manual palpation is used to diagnose the pathological and stiffness changes. But palpation highly depends on the judgment of the physician to perform the diagnosis. The techniques of ultrasonic elastography have been used to characterize the palpation. It provides the objective and alternative information for clinical diagnosis.
The study aims to implement an ultrasound elasticity image system for evaluating the biological tissue elasticity. The pressure sensor and 5MHz ultrasound pulser are combined with the two single axis (X axis, Z axis) step motors to scan and compress the objects. The cross-correlation technique is used to process the pre- and post-compression of radio frequency (RF) signals. From the measured data we can calculate the elasticity modulus and strain distribution of the objects.
The custom-made gelatin and pork tissue was used as phantoms for system validation. Our results show that system can effectively differentiate the objects within the elasticity difference. Our approach can provide the elasticity information and increase the discernment which cannot obtain from tradition B-mode images. The signal-to-noise ratio of strain was increased by increasing the compression depth.
The traditional cross-correlation method has decorrelation when the deformation of objects causes the waveform changes. Our method relies on the significant interface echo signal can reduce the correlation noise interference. If we cannot observe the boundary in B-mode, we cannot estimate the elastic correctly. If the interference can be removed we can use the correlation technique to measure the elasticity accurately.
論文目次 中文摘要 I
Abstract II
致謝 III
Contents IV
List of Figures V
List of Tables VII
Chapter 1. Introduction 1
1.1 Motivation and the Aim of this Study 1
1.1.1 The Elasticity Estimation Methods 2
1.1.2 Introduction to Elastography 5
1.2 Literature Review 6
Chapter 2. Materials and Methods 14
2.1 The Deformation Measurement 14
2.1.1 Cross-Correlation 15
2.2 System Architecture 16
2.2.1 Force Sensor and Compression Plane 17
2.2.2 Ultrasound Processing Card 19
2.2.3 The Motor Drive for Ultrasound System 20
2.2.4 Phantoms Preparation 21
2.3 Experiment Procedures 22
2.3.1 Measurement Platform 22
2.3.2 Measurement Methods 23
2.3.3 Signal Processor 23
Chapter 3. Results and Discussion 32
3.1 Enhance echo Signals 32
3.2 The Shift between Motor and Signal 33
3.3 Strain-Stress Curve 34
3.4 Deformation in Multilayered Phantoms 36
3.4.1 Traditional Cross-correlation Techniques 36
3.4.2 Adjustable Cross-correlation Techniques 38
3.5 Elastography 41
Chapter 4. Conclusion 45
References 47
參考文獻 [1] Zheng Y, Mak A. An Ultrasound Indentation System for Biomechanical Properties Assessment of Soft Tissues in-Vivo. IEEE Transactions on Biomedical Engineering. 1996;43:912-8.
[2] Garra B. Tissue Elasticity Imaging Using Ultrasound. APPLIED RADIOLOGY. 2011;40:24-30.
[3] Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues. Ultrasonic imaging. 1991;13:111-34.
[4] Varghese T. Quasi-Static Ultrasound Elastography. Ultrasound clinics. 2009;4:323-38.
[5] 王信凱. 超音波彈性影像Ultrasound Elastography. 中華民國放射線醫學會 會訊. 2008:2-3.
[6] Ogden R. Non-Linear Elastic Deformations: Dover Pubns; 1997.
[7] Lifshitz La. Theory of Elasticity: Oxford: Pergamon Press; 1986.
[8] Strain-Rate Regimes.
[9] Wellman P, Dalton E, Krag D, Kern K, Howe R. Tactile Imaging of Breast Masses: First Clinical Report. Archives Surgery. 2001:136-204.
[10] Yeh W, Li P, Jeng Y, Hsu H, Kuo P, Li M, et al. Elastic Modulus Measurements of Human Liver and Correlation with Pathology. Ultrasound in medicine & biology. 2002;28:467-74.
[11] Souchon R, Soualmi L, Bertrand M, Chapelon J, Kallel F, Ophir J. Ultrasonic Elastography Using Sector Scan Imaging and a Radial Compression. Ultrasonics. 2002;40:867-71.
[12] Chen H, Shi H, Varghese T. Improvement of Elastographic Displacement Estimation Using a Two-Step Cross-Correlation Method. Ultrasound in medicine & biology. 2007;33:48-56.
[13] Rivaz H, Boctor E, Choti M, Hager G. Real-Time Regularized Ultrasound Elastography. IEEE Transactions on Medical Image. 2010:1-18.
[14] Righetti R, Ophir J, Ktonas P. Axial Resolution in Elastography. Ultrasound in medicine & biology. 2002;28:101-13.
[15] Sarvazyan A. Method and Device for Shear Wave Elasticity Imaging. Google Patents; 1997.
[16] Zheng Y, Choi Y, Wong K, Chan S, Mak A. Biomechanical Assessment of Plantar Foot Tissue in Diabetic Patients Using an Ultrasound Indentation System. Ultrasound in medicine & biology. 2000;26:451-6.
[17] Zheng Y, Li Z, Choi A, Lu M, Chen X, Huang Q. Ultrasound Palpation Sensor for Tissue Thickness and Elasticity Measurement-Assessment of Transverse Carpal Ligament. Ultrasonics. 2006;44:313-7.
[18] Glozman T, Azhari H. A Method for Characterization of Tissue Elastic Properties Combining Ultrasonic Computed Tomography with Elastography. Journal of Ultrasound in Medicine. 2010;29:387-98.
[19] Treece G, Lindop J, Chen L, Housden J, Prager R, Gee A. Real-Time Quasi-Static Ultrasound Elastography. Interface Focus. 2011;1:540-52.
[20] Cespedes I, Ophir J, Ponnekanti H, Maklad N. Elastography: Elasticity Imaging Using Ultrasound with Application to Muscle and Breast in Vivo. Ultrasonic imaging. 1993;15:73-88.
[21] Varghese T, Ophir J. An Analysis of Elastographic Contrast-to-Noise Ratio. Ultrasound in medicine & biology. 1998;24:915-24.
[22] Hamdan M, Righetti P. Modern Strategies for Protein Quantification in Proteome Analysis: Advantages and Limitations. Mass spectrometry reviews. 2002;21:287-302.
[23] Simon J, Jacobs L, Campion M, Wende K, Simonian N, Cookfair D, et al. Magnetic Rsonance Studies of Intramuscular Interferon β–1a for Relapsing Multiple sclerosis. Annals of neurology. 1998;43:79-87.
[24] Hall T, Zhu Y, Spalding C. In Vivo Real-Time Freehand Palpation Imaging. Ultrasound in medicine & biology. 2003;29:427-35.
[25] Pellot-Barakat C, Frouin F, Insana M, Herment A. Ultrasound Elastography Based on Multiscale Estimations of Regularized Displacement Fields. IEEE Transactions on Medical Image. 2004;23:153-63.
[26] 郭柏齡. 白兔跟建彈性之超音波測量. 國立台灣大學 電機工程研究所 碩士論文. 民國八十七年.
[27] 林明熙. 整合超音波溫度及彈性影像用於高能聚焦式超音波熱燒灼之監控. 長庚大學 電機工程研究所 碩士論文. 民國九十八年.
[28] ALGOL. Handy Force Gauge User 's Guide.
[29] Skovoroda A, Emelianov S, Lubinski M, Sarvazyan A, O’Donnell M. Theoretical Analysis and Verificetion of Ultrasound Displacement and Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1994;41:314-25.
[30] Kallel F, Bertrand M. Tissue Elasticity Reconstruction Using Linear Perturbation Method. IEEE Transactions on Medical Image. 1996 15:209-313.
[31] Ultratek U. PCIUT3100(T)-SDKLV. User's Guide. 2007;35.
[32] Lopata R, Nillesen M, Hansen H, Gerrits I, Thijssen J, de Korte C. Performance Evaluation of Methods for Two-Dimensional Displacement and Strain Estimation Using Ultrasound Radio Frequency Data. Ultrasound in medicine & biology. 2009;35:796-812.
[33] CL dK, EI C, AF vdS, B N, K tN. Elastic and Acoustic Properties of Vessel Mimicking Material for Elasticity Imaging. Ultrasonic imaging. 1997;19:112–26.
[34] Madsen E, Frank G, Hobson M, Shi H, Jiang J, Varghese T, et al. Spherical Lesion Phantoms for Testing the Performance of Elastography Systems. Physics in Medicine Biology. 2005;50:5983.
[35] Cespedes I, Ophir J. Reduction of Image Noise in Elastography. Ultrasonic imaging. 1993;15:89-102.
[36] Varghese T, Ophir J. Estimating Tissue Strain from Signal Decorrelation Using the Correlation Coefficient. Ultrasound in medicine & biology. 1996;22:1249-54.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw