進階搜尋


 
系統識別號 U0026-2408201211462100
論文名稱(中文) 食道鱗狀細胞癌中hRAB37的低表達及其與癌症轉移的機制探討
論文名稱(英文) Downregulation of hRAB37 and Its Roles in Cancer Metastasis of Esophageal Squamous Cell Carcinoma
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 100
學期 2
出版年 101
研究生(中文) 蒲詩雯
研究生(英文) Shih-Wen Pu
學號 S26994029
學位類別 碩士
語文別 英文
論文頁數 80頁
口試委員 指導教授-王憶卿
口試委員-劉校生
口試委員-廖寶琦
口試委員-鄭宏祺
中文關鍵字 hRAB37  胞吐作用  食道癌  轉移 
英文關鍵字 hRAB37  exocytosis  esophageal squamous cell carcinoma  metastasis 
學科別分類
中文摘要 研究背景: 根據衛生署統計結果顯示,食道癌為國人男性癌症死因的第六名,超過50%的病人有癌症轉移的現象。食道癌主要分為兩種類型:鱗狀細胞癌 (squamous cell carcinoma, SCC) 及腺癌 (adenocarcinoma)。在亞洲及台灣主要盛行的是鱗狀細胞癌。因此,在食道鱗狀細胞癌中尋找和癌症轉移相關基因為當務之急。我們實驗室先前以cDNA二端定序法 (random amplification of cDNA ends RACE) 首次定義出人類RAB37 (hRAB37) 基因序列,並發現hRAB37轉譯出一種small GTPase,在肺癌中扮演癌症轉移抑癌基因角色。同源型老鼠Rab37最早是在骨髓巨大細胞中被發現,位於細胞的分泌顆粒(granule)上,暗示Rab37可能會幫助細胞進行胞吐作用(exocytosis),而詳細的機制仍待闡明。
研究目的: 本研究旨在透過臨床、細胞及動物實驗層次探討hRAB37在食道鱗狀細胞癌 (esophageal squamous cell carcinoma, ESCC) 的轉移機制中所扮演的角色。
研究結果: 利用免疫組織染色的實驗,我們在ESCC病人中檢測hRAB37蛋白的表現程度,共有23.9% (26/109) 的病人為hRAB37低表達的情形;而透過quantitative reverse-transcriptase-PCR,發現21.9% (25/114)的病人有mRNA低表達的情形,並與不良預後有顯著關係,顯示hRAB37可為有潛力的食道鱗狀細胞癌預後指標。接著我們檢測了三株台灣食道癌細胞株 (CE48T, CE81T, CE146T) 中hRAB37 mRNA和蛋白的表現程度,發現hRAB37表現程度與其細胞爬行(migration) 能力有負相關的情形。更進一步建立了CE48T及CE81T持續表達hRAB37的細胞株,透過wound healing assay 及transwell invasion assay,顯示過度表達hRAB37會抑制ESCC細胞的爬行及invasion能力。由於hRAB37可能參與調控細胞的胞吐作用,我們蒐集CE48T及CE81T持續表達hRAB37細胞的conditioned medium (CM) 處理原始的 (parental) CE48T及CE81T細胞,發現其會抑制parental CE48T及CE81T細胞的爬行能力,暗示hRAB37可能是透過運送可抑制細胞爬行的物質到細胞外。因此,根據secretomics分析,我們鑑定出一個可能為hRAB37所調控運送的蛋白,thrombospondin-1 (TSP-1);在CE81T持續表達hRAB37細胞的CM中,TSP-1確實有大量表現的情形;而將hRAB37進行knockdown實驗後,TSP-1在CM中的表現情形有下降的現象。利用共軛焦顯微鏡的觀察,證實hRAB37和TSP-1在trans-Golgi apparatus 有colocalization的情形。由於TSP-1已知會抑制metaloproteinase (MMP) 活性,經由gelatin zymography實驗,hRAB37抑制MMP-2及MMP-9的活性;而knockdown hRAB37後,MMP-2及MMP-9的活性有回復的情形。經由Western blot檢測,說明了hRAB37可能是透過分泌TSP-1進而抑制p-FAK, p-Paxillin, p-ERK這條與癌症轉移相關的路徑而抑制了細胞的爬行及invasion;在動物實驗模式中,觀察到持續表達hRAB37抑制肺轉移的情形。
研究結論:總結以上,hRAB37在ESCC中可能透過分泌TSP-1,進而降低MMP/FAK/ERK路徑而抑制癌轉移,hRAB37低表現並可作為ESCC病人的不良預後指標。
英文摘要 Background: The predominant type of esophageal cancer in Asia countries including Taiwan is esophageal squamous cell carcinoma (ESCC). Prognosis of ESCC patients is poor and patients often have metastatic diseases. Therefore, identification and characterization of metastasis-related genes in ESCC is urgent. Our lab previously cloned the human RAB37 (hRAB37) small GTPase and demonstrated that hRAB37 acts as a metastasis suppressor in lung cancer patients. The mouse homolog Rab37 has been reported to be involved in regulating exocytic events. However, the function and etiological role of hRAB37 in ESCC remains undefined.
Purpose: The aim of this study is to elucidate the roles and underlying mechanisms of hRAB37 in metastasis of ESCC from clinical, cell and animal models.
Results: We found that absent hRAB37 protein expression in 23.9% (26/109) of ESCC patients by immunohistochemistry. Using quantitative reverse-transcriptase-PCR assay, hRAB37 mRNA was found to be low expression in 21.9% (25/114) ESCC patients. Both low mRNA and absent protein expressions of hRAB37 correlated with poor prognosis of ESCC patients in overall survival analysis. In addition, the mRNA and protein level of hRAB37 was lower in CE48T and CE81T Taiwanese ESCC cell lines, which showed high migration ability as compared with another Taiwanese ESCC cell line CE146T, which showed relatively low migration ability by wound healing assay. Note that overexpression of hRAB37 suppressed migration and invasion ability of CE81T cells. Due to the exocytic role of hRAB37, we therefore tested the effects of cells cultured under the conditioned medium (CM) from stably hRAB37 overexpressed CE48T and CE81T cells. The migration ability of parental CE48T and CE81T cells which cultured with CM from stably hRAB37-overexpressed CE48T and CE81T cells was suppressed as compared to cultured with CM from control cells. Through secretomic analysis, we identified a hRAB37 trafficking cargo protein candidate, thrombospodin-1 (TSP-1), which was reported to inhibit metaloproteinase (MMP) activity. Furthermore, CM from hRAB37-overexpressed cells suppressed MMP-2 and MMP-9 activities by gelatin zymography assay, whereas the activities of MMP-2 and MMP-9 were restored by CM from si-hRAB37. Furthermore, hRAB37 overexpression suppressed metastasis related proteins, such as p-FAK, p-Paxillin and p-ERK. CM from hRAB37-overexpressed cells had increased amount of TSP-1 expression. On the contrary, CM from si-hRAB37 cells had decreased amount of TSP-1 expression. In addition, hRAB37 colocalized with TSP-1 in trans-Golgi apparatus in ESCC cells using confocal microscopy. In animal metastasis model, we further confirmed that hRAB37 overexpression suppressed tumor metastasis of CE81T xenograft.
Conclusion: Our cell, animal, and clinical results suggested that hRAB37 is a metastasis suppressor and a potential prognosis biomarker for ESCC via secretion of TSP-1 to inhibit MMP/FAK/ERK signal in ESCC.
論文目次 Introduction---------------------------------------------------------- 1
I. Clinical significance of esophageal squamous cell carcinoma (ESCC) 1
(a) Esophageal cancer in Taiwan, Asia and worldwide 1
(b) Known life style and environmental factors of
esophageal cancer-- 1
(c) Known molecular alterations of esophageal squamous cell
carcinoma 2
(d) Genetic and epigenetic alterations in esophageal cancer 4
II. Human RAB37 (hRAB37) in previous study 5
(a) Rab GTPases in vesicle trafficking 5
(b) Gene locus and protein motif of hRAB37 6
(c) Roles of murine Rab37 (mRab37) and human RAB37 (hRAB37) 7
III. hRAB37 in regulation of exocytosis 9
(a) Effectors and interacting proteins of Rab37 9
(b) Cargo proteins of mRab37 and hRAB37 10
Study basis and specific aims 11
Materials and methods 13
I. Clinical samples of ESCC patients 13
II. Cell lines and culture 13
III. Plasmid, RNAi and transfection 14
IV. RNA extraction and quantitative reverse-transcriptase PCR
(qRT-PCR) assays 15
V. Immunohistochemistry (IHC) assay 15
VI. Genomic DNA extraction and sodium bisulfate conversion 16
VII. Pyrosequencing assay 16
VIII. 5’-Aza-2’-deoxycitidine (5’-Aza-dC) treatment 17
IX. DNA dosage and qPCR assay 17
X. Western blot analysis 17
XI. Wound healing assay 18
XII. Trans-well migration and invasion assays 18
XIII. Conditioned medium preparation 19
XIV. Gelatin zymography assay 19
XV. Immunocytochemistry (ICC) assay 19
XVI. Immunoprecipitation (IP) assay 20
XVII. Animal metastasis assay 20
XVIII. Statistical analysis 21
Results 22
I. In clinical model:
(a) hRAB37 protein expression is downregulated in ESCC patients
and have a significant association with poorer survival. 22
(b) hRAB37 mRNA expression is downregulated in ESCC patients
and have a significant association with poorer survival. 22
(c) hRAB37 exon 1 methylation level in ESCC patients. 23
(d) hRAB37 DNA dosage level in ESCC patients. 23
II. In cell model:
(a) hRAB37 promoter and exon 1 region are hypermethylated in
ESCC cell lines and can be demethylated by 5’-Aza-dC treatment. 24
(b) DNA dosage loss of hRAB37 was observed in ESCC cell lines. 24
(c) Lower expression of hRAB37 exhibits higher cell migration
ability. 25
(d) Ectopically overexpression of hRAB37 inhibits cell migration
and invasion abilities. 25
(e) hRAB37-mediated secreted proteins such as thrombospondin-1
inhibit ESCC cells migration. 25
(f) hRAB37 colocalizes with TSP-1 in trans-Golgi apparatus of
ESCC cells. 26
(g) hRAB37 and TSP-1 are in the same protein complex. 26
(h) hRAB37 inhibits MMP/FAK/Paxillin pathways in vitro. 27
III. In animal model:
(a) hRAB37 inhibits ESCC metastasis in vivo. 27
(b) hRAB37-mediated migration signaling proteins are validated in
xenograft tissues. 28
Discussion 29
References 35
Tables 40
Figures 50
Appendix 72


TABLE CONTENTS

Table 1 The primers used in the current study. 41
Table 2 The antibodies and their reaction conditions used in the current study. 42
Table 3 The cell lines and their characteristics used in the current
study. 43
Table 4 siRNA sequences used in the current study. 45
Table 5 Alteration of hRAB37 protein expression level in relation to
clinicopathological parameters in 109 ESCC patients. 46
Table 6 Alteration of hRAB37 mRNA expression level in relation to
clinicopathological parameters in 114 ESCC patients. 47
Table 7 DNA copy dosage and methylation alterations of hRAB37 gene in 21 ESCC patients. 48


FIGURE CONTENTS

Figure 1 hRAB37 protein is downregulated in ESCC patients and
shows a significant association with poorer survival. 51
Figure 2 hRAB37 mRNA is downregulated in ESCC patients and
shows a significant association with poorer survival. 53
Figure 3 The dot plot analysis of DNA methylation of hRAB37 gene of paired normal and tumor tissues from 41 ESCC patients and correlation of DNA methylation with mRNA expression of hRAB37. 54
Figure 4 The DNA dosage analyses of ESCC patients and cell lines. 55
Figure 5 DNA elements of methylation analysis and methylation status of hRAB37 gene using pyrosequencing in ESCC cell lines. 57
Figure 6 Restoration of hRAB37 expression by treatment with demethylation reagent 5’-Aza-dC. 59
Figure 7 The migration potential in Taiwanese ESCC cell lines. 60
Figure 8 Overexpression of hRAB37 inhibits ESCC cells migration and invasion abilities. 61
Figure 9 hRAB37 mediated secreted proteins such as thrombospondin-1 (TSP-1) to inhibit ESCC cells migration. 63
Figure 10 hRAB37 colocalizes with thrombospondin-1 (TSP-1) in trans-Golgi apparatus of ESCC cells. 65
Figure 11 hRAB37 and TSP-1 are in the same protein complex in ESCC cells. 66
Figure 12 hRAB37 inhibits FAK/Paxillin/MMP pathways in vitro. 67
Figure 13 hRAB37 inhibits ESCC cells metastasis in vivo. 68
Figure 14 hRAB37 suppresses p-FAK and p-Paxillin in vivo. 70

APPENDIX

Figure 1 Geographical distribution of cumulative rates, age (0–74 years), for esophageal carcinomas. 73
Figure 2 Risk factors affecting the development of esophageal malignancies. 74
Figure 3 Localization and function of Rab GTPases. 75
Figure 4 The Rab switch and its circuitry. 76
Figure 5 Rab functions in vesicle trafficking of cargos via
effector-mediated processes. 77
Figure 6 hRAB37 amino acid sequences, alignment of hRAB37 and to other RAB proteins, and mRNA level of hRAB37 in various tissues. 78
Figure 7 mRNA expression and promoter/exon1 hypermethylation of hRAB37 gene in lung cancer patients. 79
Figure 8 Predicted hRAB37 interacting proteins. 80
參考文獻 Antequera, F., and Bird, A. (1993). Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90, 11995-11999.
Berger, A.H., Knudson, A.G., and Pandolfi, P.P. (2011). A continuum model for tumour suppression. Nature 476, 163-169.
Betz, A., Thakur, P., Junge, H.J., Ashery, U., Rhee, J.-S., Scheuss, V., Rosenmund, C., Rettig, J., and Brose, N. (2001). Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming. Neuron 30, 183-196.
Bollschweiler E, W.E., Gutschow C, Hölscher AH (2001). Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92, 549-555.
Bravo-Cordero, J.J., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., Garcia, M.A., Arroyo, A.G., and Montoya, M.C. (2007). MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 26, 1499-1510.
Brenner, B., Ilson, D.H., and Minsky, B.D. (2004). Treatment of localized esophageal cancer. Semin Oncol 31, 554-565.
Brock, M.V., Gou, M., Akiyama, Y., Muller, A., Wu, T.T., Montgomery, E., Deasel, M., Germonpre, P., Rubinson, L., Heitmiller, R.F., Yang, S.C., Forastiere, A.A., Baylin, S.B., and Herman, J.G. (2003). Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9, 2912-2919.
Brunner, Y., Coute, Y., Iezzi, M., Foti, M., Fukuda, M., Hochstrasser, D.F., Wollheim, C.B., and Sanchez, J.C. (2007). Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 6, 1007-1017.
Casey, T.M., Meade, J.L., and Hewitt, E.W. (2007). Organelle Proteomics. Mol Cell Proteomics 6, 767-780.
Chang, S.S., Lu, C.L., Chao, J.Y., Chao, Y., Yen, S.H., Wang, S.S., Chang, F.Y., and Lee, S.D. (2002). Unchanging trend of adenocarcinoma of the esophagus and gastric cardia in Taiwan: a 15-year experience in a single center. Dig Dis Sci 47, 735-740.
Chen, M.F., Lu, M.S., Chen, P.T., Chen, W.C., Lin, P.Y., and Lee, K.D. (2012). Role of interleukin 1 beta in esophageal squamous cell carcinoma. J Mol Med (Berl) 90, 89-100.
Chen, M.F., Lu, M.S., Lin, P.Y., Chen, P.T., Chen, W.C., and Lee, K.D. (2011). The role of DNA methyltransferase 3b in esophageal squamous cell carcinoma. Cancer.
Chen, S.C., Chou, C.K., Wong, F.H., Chang, C.M., and Hu, C.P. (1991). Overexpression of epidermal growth factor and insulin-like growth factor-I receptors and autocrine stimulation in human esophageal carcinoma cells. Cancer Res 51, 1898-1903.
Corley, D.A., and Buffler, P.A. (2001). Oesophageal and gastric cardia adenocarcinomas: analysis of regional variation using the Cancer Incidence in Five Continents database. Int J Epidemiol 30, 1415-1425.
De Smet, C., Lurquin, C., Lethe, B., Martelange, V., and Boon, T. (1999). DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19, 7327-7335.
Dong, S.W., Cui, Y.T., Zhong, R.R., Liang, D.C., Liu, Y.M., Wang, Y.G., He, Z., Wang, S., Liang, S.J., and Zhang, P. (2012). Decreased expression of retinoblastoma protein-interacting zinc-finger gene 1 in human esophageal squamous cell cancer by DNA methylation. Clin Lab 58, 41-51.
Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463.
Eisenhofer, G., Huynh, T.T., Elkahloun, A., Morris, J.C., Bratslavsky, G., Linehan, W.M., Zhuang, Z., Balgley, B.M., Lee, C.S., Mannelli, M., Lenders, J.W., Bornstein, S.R., and Pacak, K. (2008). Differential expression of the regulated catecholamine secretory pathway in different hereditary forms of pheochromocytoma. Am J Physiol Endocrinol Metab 295, E1223-1233.
Enzinger, P.C., and Mayer, R.J. (2003). Esophageal Cancer. N Engl J Med 349, 2241-2252.
Fahn, H.J., Wang, L.S., Huang, B.S., Huang, M.H., and Chien, K.Y. (1994). Tumor recurrence in long-term survivors after treatment of carcinoma of the esophagus. Ann Thorac Surg 57, 677-681.
Fernando Lopitz-Otsoaa, E.R.-S., Fabienne Ailleta, Juan Casado-Velab, Valérie Langa, Rune Matthiesenc, Felix Elortzab, Manuel S. Rodriguez (2012). Integrativeanalysis of the ubiquitinproteomeisolated using TandemUbiquitinBindingEntities (TUBEs). J Proteomics 75, 2998-3014.
Fukuda, M. (2003). Distinct Rab Binding Specificity of Rim1, Rim2, Rabphilin, and Noc2. J Biol Chem 278, 15373-15380.
Fukuda, M. (2008). Regulation of secretory vesicle traffic by Rab small GTPases. Cella Mol Life Sci 65, 2801-2813.
Goldenring, J.R., Shen, K.R., Vaughan, H.D., and Modlin, I.M. (1993). Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J Biol Chem 268, 18419-18422.
Good, D.J., Polverini, P.J., Rastinejad, F., Le Beau, M.M., Lemons, R.S., Frazier, W.A., and Bouck, N.P. (1990). A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87, 6624-6628.
Guo, W., and Giancotti, F.G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5, 816-826.
Hastings, P.J., Lupski, J.R., Rosenberg, S.M., and Ira, G. (2009). Mechanisms of change in gene copy number. Nat Rev Genet 10, 551-564.
He, W., Li, K., Wang, F., Qin, Y.R., and Fan, Q.X. (2012). Expression of OCT4 in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. World J Gastroenterol 18, 712-719.
He, W., Wang, Z., Wang, Q., Fan, Q., Shou, C., Wang, J., Giercksky, K.E., Nesland, J.M., and Suo, Z. (2009). Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer 9, 426.
Hendrix, A., Maynard, D., Pauwels, P., Braems, G., Denys, H., Van den Broecke, R., Lambert, J., Van Belle, S., Cocquyt, V., Gespach, C., Bracke, M., Seabra, M.C., Gahl, W.A., De Wever, O., and Westbroek, W. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 102, 866-880.
Hongo, M. (2004). Review article: Barrett's oesophagus and carcinoma in Japan. Aliment Pharmacol Ther 20 Suppl 8, 50-54.
Hongo, M., Nagasaki, Y., and Shoji, T. (2009). Epidemiology of esophageal cancer: Orient to Occident. Effects of chronology, geography and ethnicity. J Gastroenterol Hepatol 24, 729-735.
Hsu, H.S., Chen, H.W., Kao, C.L., Wu, M.L., Li, A.F., and Cheng, T.H. (2011). MDM2 is overexpressed and regulated by the eukaryotic translation initiation factor 4E (eIF4E) in human squamous cell carcinoma of esophagus. Ann Surg Oncol 18, 1469-1477.
Jia, Y., Yang, Y., Brock, M.V., Cao, B., Zhan, Q., Li, Y., Yu, Y., Herman, J.G., and Guo, M. (2012). Methylation of TFPI-2 is an early event of esophageal carcinogenesis. Epigenomics 4, 135-146.
Juan, H.C., Tsai, H.T., Chang, P.H., Huang, C.Y., Hu, C.P., and Wong, F.H. (2011). Insulin-like growth factor 1 mediates 5-fluorouracil chemoresistance in esophageal carcinoma cells through increasing survivin stability. Apoptosis 16, 174-183.
Knudson, A.G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68, 820-823.
Leu, C.M., Wong, F.H., Chang, C., Huang, S.F., and Hu, C.P. (2003). Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene 22, 7809-7818.
Lin, D.C., Du, X.L., and Wang, M.R. (2009). Protein alterations in ESCC and clinical implications: a review. Dis Esophagus 22, 9-20.
Liu, Y.C., Chen, S.C., Chang, C., Leu, C.M., and Hu, C.P. (1996). Platelet-derived growth factor is an autocrine stimulator for the growth and survival of human esophageal carcinoma cell lines. Exp Cell Res 228, 206-211.
Liu,S., and Storrie B. (2012) Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci [Epub ahead of print]
Lopitz-Otsoa, F., Rodriguez-Suarez, E., Aillet, F., Casado-Vela, J., Lang, V., Matthiesen, R., Elortza, F., and Rodriguez, M.S. (2012). Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J Proteomics 75, 2998-3014.
Masuda, E.S., Luo, Y., Young, C., Shen, M., Rossi, A.B., Huang, B.C., Yu, S., Bennett, M.K., Payan, D.G., and Scheller, R.H. (2000). Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS Lett 470, 61-64.
Matesic, L.E., Yip, R., Reuss, A.E., Swing, D.A., O'Sullivan, T.N., Fletcher, C.F., Copeland, N.G., and Jenkins, N.A. (2001). Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci U S A 98, 10238-10243.
Miyawaki, Y., Kawachi, H., Ooi, A., Eishi, Y., Kawano, T., Inazawa, J., and Imoto, I. (2012). Genomic copy-number alterations of MYC and FHIT genes are associated with survival in esophageal squamous-cell carcinoma. Cancer Sci 103, 1558-1566.
Moore, L.D., Le, T., and Fan, G. (2012). DNA Methylation and Its Basic Function. Neuropsychopharmacology.
Mori, R., Ikematsu, K., Kitaguchi, T., Kim, S.E., Okamoto, M., Chiba, T., Miyawaki, A., Shimokawa, I., and Tsuboi, T. (2011). Release of TNF-alpha from macrophages is mediated by small GTPase Rab37. Eur J Immunol 41, 3230-3239.
Nam, K.T., Lee, H.J., Smith, J.J., Lapierre, L.A., Kamath, V.P., Chen, X., Aronow, B.J., Yeatman, T.J., Bhartur, S.G., Calhoun, B.C., Condie, B., Manley, N.R., Beauchamp, R.D., Coffey, R.J., and Goldenring, J.R. (2010). Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 120, 840-849.
Pardali, K., and Moustakas, A. (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775, 21-62.
Pawar, H., Kashyap, M.K., Sahasrabuddhe, N.A., Renuse, S., Harsha, H.C., Kumar, P., Sharma, J., Kandasamy, K., Marimuthu, A., Nair, B., Rajagopalan, S., Maharudraiah, J., Premalatha, C.S., Kumar, K.V., Vijayakumar, M., Chaerkady, R., Prasad, T.S., Kumar, R.V., and Pandey, A. (2011). Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biol Ther 12, 510-522.
Pickens, A., and Orringer, M.B. (2003). Geographical distribution and racial disparity in esophageal cancer. Ann Thorac Surg 76, S1367-1369.
Rajendra, S., Kutty, K., and Karim, N. (2004). Ethnic differences in the prevalence of endoscopic esophagitis and Barrett's esophagus: the long and short of it all. Dig Dis Sci 49, 237-242.
Research Committee on Malignancy of Esophageal Cancer, Japanese Society for Esophageal Diseases (2001). Prognostic significance of CyclinD1 and E-Cadherin in patients with esophageal squamous cell carcinoma: multiinstitutional retrospective analysis. J Am Coll Surg 192, 708-718.
Rodríguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., Hynes, R.O., Lawler, J., and Iruela-Arispe, M.L. (2001). Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98, 12485-12490.
Rokkas, T., Pistiolas, D., Sechopoulos, P., Robotis, I., and Margantinis, G. (2007). Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin Gastroenterol Hepatol 5, 1413-1417, 1417 e1411-1412.
Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173-1178.
Shimada, H., Takeda, A., Nabeya, Y., Okazumi, S.I., Matsubara, H., Funami, Y., Hayashi, H., Gunji, Y., Kobayashi, S., Suzuki, T., and Ochiai, T. (2001). Clinical significance of serum vascular endothelial growth factor in esophageal squamous cell carcinoma. Cancer 92, 663-669.
Siegel, R., Ward, E., Brawley, O., and Jemal, A. (2011). Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61, 212-236.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525.
Thiagalingam, S., Foy, R.L., Cheng, K.H., Lee, H.J., Thiagalingam, A., and Ponte, J.F. (2002). Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol 14, 65-72.
Tsuboi, T., and Fukuda, M. (2006). Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 119, 2196-2203.
von Brevern, M., Hollstein, M.C., Risk, J.M., Garde, J., Bennett, W.P., Harris, C.C., Muehlbauer, K.R., and Field, J.K. (1998). Loss of heterozygosity in sporadic oesophageal tumors in the tylosis oesophageal cancer (TOC) gene region of chromosome 17q. Oncogene 17, 2101-2105.
Wang, B.X., Yin, B.L., He, B., Chen, C., Zhao, M., Zhang, W.X., Xia, Z.K., Pan, Y.Z., Tang, J.Q., Zhou, X.M., and Yin, N. (2012). Overexpression of DNA damage-induced 45 alpha gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J Exp Clin Cancer Res 31, 11.
Wang, Q., He, W., Lu, C., Wang, Z., Wang, J., Giercksky, K.E., Nesland, J.M., and Suo, Z. (2009). Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 29, 1233-1241.
Wei, W., Kong, B., Yang, Q., and Qu, X. (2010). Hepatocyte growth factor enhances ovarian cancer cell invasion through downregulation of thrombospondin-1. Cancer Biol Ther 9, 79-87.
Wright, P.K., May, F.E., Darby, S., Saif, R., Lennard, T.W., and Westley, B.R. (2009). Estrogen regulates vesicle trafficking gene expression in EFF-3, EFM-19 and MCF-7 breast cancer cells. Int J Clin Exp Pathol 2, 463-475.
Wu, C.Y., Tseng, R.C., Hsu, H.S., Wang, Y.C., and Hsu, M.T. (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer 63, 360-367.
Wu, D.C., Wu, I.C., Lee, J.M., Hsu, H.K., Kao, E.L., Chou, S.H., and Wu, M.T. (2005). Helicobacter pylori infection: a protective factor for esophageal squamous cell carcinoma in a Taiwanese population. Am J Gastroenterol 100, 588-593.
Wu, I.C., Lu, C.Y., Kuo, F.C., Tsai, S.M., Lee, K.W., Kuo, W.R., Cheng, Y.J., Kao, E.L., Yang, M.S., and Ko, Y.C. (2006). Interaction between cigarette, alcohol and betel nut use on esophageal cancer risk in Taiwan. Eur J Clin Invest 36, 236-241.
Xi-Jiang Zhao, H.L., Hua Chen, Yan-Xue Liu, Li-Hua Zhang, Su-Xiang Liu, Qing-Lai Feng (2003). Expression of e-cadherin and b-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol 9, 225-232.
Yan, S., Zhou, C., Lou, X., Xiao, Z., Zhu, H., Wang, Q., Wang, Y., Lu, N., He, S., Zhan, Q., Liu, S., and Xu, N. (2009). PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res 69, 3283-3290.
Yoon, S.O., Shin, S., and Mercurio, A.M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65, 2761-2769.
Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107-117.
Zhang, S., Ding, F., Luo, A., Chen, A., Yu, Z., Ren, S., Liu, Z., and Zhang, L. (2007). XIAP is highly expressed in esophageal cancer and its downregulation by RNAi sensitizes esophageal carcinoma cell lines to chemotherapeutics. Cancer Biol Ther 6, 973-980.
Zhao, X.J., Li, H., Chen, H., Liu, Y.X., Zhang, L.H., Liu, S.X., and Feng, Q.L. (2003). Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol 9, 225-232.
Zhou, C., Liu, S., Zhou, X., Xue, L., Quan, L., Lu, N., Zhang, G., Bai, J., Wang, Y., Liu, Z., Zhan, Q., Zhu, H., and Xu, N. (2005). Overexpression of human pituitary tumor transforming gene (hPTTG), is regulated by beta-catenin /TCF pathway in human esophageal squamous cell carcinoma. Int J Cancer 113, 891-898.
Zhou, Z.Q., Cao, W.H., Xie, J.J., Lin, J., Shen, Z.Y., Zhang, Q.Y., Shen, J.H., Xu, L.Y., and Li, E.M. (2009). Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma. BMC Cancer 9, 291.
Zhu, C., Qin, Y.R., Xie, D., Chua, D.T., Fung, J.M., Chen, L., Fu, L., Hu, L., and Guan, X.Y. (2009). Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene 28, 2821-2828.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw