進階搜尋


 
系統識別號 U0026-2408201204271400
論文名稱(中文) 數值模擬二氧化碳–水–長石系統之化學及礦物反應變化
論文名稱(英文) Numerical simulation on the chemical and mineral reactions in the CO2–water–feldspar system
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 賴郡曄
研究生(英文) Jyun-Ye Lai
學號 l46994085
學位類別 碩士
語文別 中文
論文頁數 147頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字 二氧化碳地質封存  數值模擬  長石  水岩反應  TOUGHREACT 
英文關鍵字 CO2 geological sequestration  numerical simulation  feldspar  water-rock interaction  TOUGHREACT 
學科別分類
中文摘要 二氧化碳地質封存的安全性與成效主要取決於地球化學和物理捕獲機制,而數值模擬是預測封存地層中二氧化碳行為的一個重要方法。已有許多程式,如ECLIPSE、PHREEQC、GEM和TOUGHREACT等,用在模擬評估二氧化碳地質封存反應。相較於實驗,數值模擬的優勢在於相關參數之易變性,且與長期之實驗過程比較也相對地省時。然而,數值模擬之準確性需由實驗結果驗證,一般認為使用不同的熱力學資料數據庫與活度模型是造成模擬結果差異之原因。本研究以內建TOUGHREACT程式碼之軟體PetraSim模擬長石-水-二氧化碳化學反應之水溶液組成變化,並與實驗結果比較,討論造成兩者差異之原因。驗證PetraSim模擬之結果後,進而預測二氧化碳地質封存系統之長期化學及礦物變化。
校正關鍵參數後之PetraSim模擬計算可與實驗結果相近,長石及二氧化碳與水在溫度45和100℃及壓力180和300 bar反應後之水溶液中Ca、Na、K及Si濃度整體分別在10-3至100 mmol/kg之間。影響模擬計算水溶液組成之關鍵參數有四。(一)長石固溶體成份:微量固溶體成份,如鉀長石中含有 < 1.5% 之鈣長石固溶體可將反應後水溶液之鉀濃度提升約十倍;(二)微量礦物(< 0.01 vol %)比例:如鉀長石與奧長石反應中有微量鈣長石相(0.01 vol %)對模擬之水溶液鈣濃度變化可達百倍;(三)反應速率:長石反應面積造成反應速率變化,而影響短時間(數天)內水溶液之成份變化;(四)次生礦物:反應生成之礦物是造成長時間(數百天)反應後水溶液成份變化之主因,模擬結果顯示造成水溶液中Ca、Na、K離子濃度明顯下降主控因素為長石類沉澱,亦生成Dawsonite沉澱。必須適當考慮這四項參數,才可得到能應用於自然環境系統之模擬結果。
PetraSim模擬砂岩-水-二氧化碳反應顯示,奧長石為主要溶解相,雖有次生礦物生成,孔隙率變化最多僅約2.0%,故封閉系統地質封存中孔隙率變化對環境危害較無影響。然而,此推論需由無水環境下砂岩與超臨界二氧化碳反應驗證,且該化學反應結果還未被實驗確認,亦無法由PetraSim模擬;因此,仍需再進一步研究。
英文摘要 The secureness and effectiveness of CO2 geological sequestration depends mainly on geophysical and geochemical trapping mechanisms. Numerical simulation is an important approach for predicting the behavior of CO2 in its sequestration environment. Numerical codes such as ECLIPSE, PHREEQC, GEM and TOUGHREACT have been used to simulate reactive transport processes for CO2 storage. Compared to experiments, numerical simulation has the advantages in the variability of relevant parameters. Also, numerical simulation is a relative time-saving process when compared to the prolonged experimental durations. However, accuracy of numerical simulation must be confirmed by the experimental data. It is considered that the differences in the thermodynamic databases and activity models could cause the discrepancies in the simulation results. In this study, I use the TOUGHREACT encoded commercial software “PetraSim” to simulate chemical reactions in the CO2-water-feldspar system, then compares the compositional changes in the aqueous solutions to that from experimental results, and finally address the possible causes for differences between the results from simulations and experiments. After verifying the results from “PetraSim” simulation, it is then possible to predict the long-term chemical and mineral changes in the CO2 sequestration system.
The results from “PetraSim” simulation can be similar to experimental results, provided that the key parameters are adequately set. Specifically, the waters that react with feldspar and CO2 at CO2 pressures of 100 and 300 bar and temperatures of 45 and 100℃ has Ca, Na, K, and Si concentrations in the order of 10-3 and 100 mmol/kg, respectively. Four key parameters dominate the modeled water compositions. The first one is the proportion of trace component in feldspar. Less than 1.5% An component in K-feldspar elevates K concentration in water by 10 folds. The second one is the amount trace (< 0.01 vol %) minerals. The Ca concentration in water increases by an order of two with the addition of 0.01 vol % anorthite to oligoclase and orthoclase dominated system. Reaction rate is the third one; especially for short-term (< 30 days) variation in water compositions. The last one is the precipitation of secondary minerals which are responsible for long term (> 100 days) water composition variations. Model results show that the decreases in Ca, Na, and K concentrations in water are caused by precipitations of secondary feldspar and dawsonite. These four parameters have to be properly considered in order to obtain simulation results that can be applied to natural system.
Results from “PetraSim” simulation on the sandstone-water-supercritical CO2 reaction show that oligoclase is the major dissolution phase. The porosity change is limited to < 2%, even with the occurrence of secondary precipitants. This result implies that CO2 sequestration in a closed system is environmentally harmless. However, this inference must be verified by sandstone-supercritical CO2 reaction in the absence of water. The chemical consequences from such reaction have not been experimentally determined and cannot be predicted by “PetraSim” simulation; therefore, remain as an issue for further investigation.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 二氧化碳地質封存與長石及砂岩之相關性 3
1.3 文獻分析 7
1.4 研究目的 9
第二章 數值模擬 10
2.1 TOUGHREACT簡介 10
2.2 TOUGHREACT之應用 11
2.3 TOUGHREACT程式架構 12
2.4 TOUGHREACT模式理論 15
2.4.1 流體傳輸之數學方程式 15
2.4.2 化學反應之數學方程式 17
2.5 PetraSim簡介 24
第三章 研究方法 25
3.1 TOUGHREACT輸入與輸出 25
3.1.1 輸入檔案 26
3.1.2 輸出檔案 45
3.2 模擬反應設定 46
3.2.1 長石-水-(二氧化碳)系統 46
3.2.2 長石砂岩-水-二氧化碳系統 54
3.3 建立長石資料數據庫 56
第四章 結果與討論 58
4.1 長石-水反應:數值模擬與實驗結果比較 58
4.2 長石-水-二氧化碳反應:模擬與實驗結果之差異及造成原因 69
4.3 反應速率與長石固溶體成分對長石-水-(二氧化碳)反應之影響 90
4.4 初始微量礦物與沉澱速率對長石-水-(二氧化碳)反應之影響 112
4.5 數值模擬次生碳酸鹽之形成原因探討 123
4.6 模擬與實驗結果之水中矽濃度差異探討 124
4.7 數值模擬與平衡反應式之計算值比較 125
4.8 長石-水-二氧化碳反應在封存砂岩孔隙率變化之應用 136
4.7.1 模擬反應結果孔隙率之探討 136
4.7.2 礦物組成比例變化之影響 139
第五章 結論 142
參考文獻 144
參考文獻 Audigane, P., Gaus, I., Czernichowski–Lauriol, I., Pruess, K., and Xu, T. F., Two–dimensional reactive transport modeling of CO2 injection in a saline Aquifer at the Sleipner site, North Sea, American Journal of Science, 307, 7, 974–1008, 2007.
Bachu, S., Gunter, W. D., and Perkins, E. H., Aquifer disposal of CO2 – hydrodynamic and mineral trapping, Energy Conversion and Management, 35, 4, 269–279, 1994.
Brantley, S. L., and Mellott, N. P., Surface area and porosity of primary silicate minerals, American Mineralogist, 85, 11–12, 1767–1783, 2000.
Dobson, P. F., Kneafsey, T. J., Sonnenthal, E. L., Spycher, N., and Apps, J. A., Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada, Journal of Contaminant Hydrology, 62–3, 459–476, 2003.
Dobson, P. F., Salah, S., Spycher, N., and Sonnenthal, E. L., Simulation of water–rock interaction in the Yellowstone geothermal system using TOUGHREACT, Geothermics, 33, 4, 493–502, 2004.
Falta, R. W., Pruess, K., Finsterle, S., and Battistelli, A., T2VOC users guide, Lawrence Berkeley Laboratory Report LBL–36400, Berkeley, CA, 1995.
Finsterle, S., iTOUGH2 User's Guide, Lawrence Berkeley National Laboratory Report LBNL–40040, Berkeley, CA, 2007.
Gale, J., Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?, Energy, 29, 9–10, 1329–1338, 2004.
Gerdemann, S. J., Dahlin, D. C., O’Connor, W. K., and Penner, L. R., Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals, Second Annual Conference on Carbon Sequestration, NETL Proceedings 5–9 May, 2003, Alexandria, VA, 2003.
Gundogan, O., Mackay, E., and Todd, A., Comparison of numerical codes for geochemical modelling of CO2 storage in target sandstone reservoirs, Chemical Engineering Research & Design, 89, 9A, 1805–1816, 2011.
Gunter, W. D., Bachu, S., and Benson, S. M., The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide, Geological Society of London, London, 233, 129–145, 2004.
IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, 2005.
Kaszuba, J. P., Janecky, D. R., and Snow, M. G., Carbon dioxide reaction processes in a model brine aquifer at 200 degrees C and 200 bars: implications for geologic sequestration of carbon, Applied Geochemistry, 18, 7, 1065–1080, 2003.
Kaszuba, J. P., Janecky, D. R., and Snow, M. G., Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository, Chemical Geology, 217, 3–4, 277–293, 2005.
Kim, J., Schwartz, F. W., Xu, T. F., Choi, H., and Kim, I. S., Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers, Vadose Zone Journal, 3, 3, 867–874, 2004.
Kiryukhin, A., Xu, T. F., Pruess, K., Apps, J., and Slovtsov, I., Thermal–hydrodynamic–chemical (THC) modeling based on geothermal field data, Geothermics, 33, 3, 349–381, 2004.
Klara, S. M., Srivastava, R. D., and McIlvried, H. G., Integrated collaborative technology, development program for CO2 sequestration in geologic formations – United States Department of Energy R&D, Energy Conversion and Management, 44, 17, 2699–2712, 2003.
Lal, R., Carbon sequestration, Philosophical Transactions of the Royal Society B–Biological Sciences, 363, 1492, 815–830, 2008.
Lasaga, A. C., Chemical–kinetics of water–rock interactions, Journal of Geophysical Research, 89, NB6, 4009–4025, 1984.
Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., and Nagy, K. L., Chemical–weathering rate laws and global geochemical cycles, Geochimica Et Cosmochimica Acta, 58, 10, 2361–2386, 1994.
Lu, J. M., Partin, J. W., Hovorka, S. D., and Wong, C., Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch–reaction experiment, Environmental Earth Sciences, 60, 2, 335–348, 2010.
Lu, P., Fu, Q., Seyfried, W. E., Hereford, A., and Zhu, C., Navajo Sandstone–brine–CO2 interaction: implications for geological carbon sequestration, Environmental Earth Sciences, 62, 1, 101–118, 2011.
Moridis, G., TOUGH+ HYDRATE v1. 0 user's manual: a code for the simulation of system behavior in hydrate–bearing geologic media, Lawrence Berkeley National Laboratory Report LBNL–149E, Berkeley, CA, 2008.
Narasimhan, T. N., and Witherspoon, P. A., Integrated finite–difference method for analyzing fluid–flow in porous–media, Water Resources Research, 12, 1, 57–64, 1976.
Newton, R. C., Charlu, T. V., and Kleppa, O. J., Thermochemistry of the high structural state plagioclases, Geochimica Et Cosmochimica Acta, 44, 7, 933–941, 1980.
Nghiem, L., Sammon, P., Grabenstetter, J., and Ohkuma, H., Modeling CO2 storage in aquifers with a fully–coupled geochemical EOS compositional simulator, SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 7–21, 2004.
Ohsumi, T., CO2 storage options in the deep–sea, Marine Technology Society Journal, 29, 3, 58–66, 1995.
Palandri, J., and Kharaka, Y. K., A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling, US Geol. Surv. Open File Report 2004–1068, 2004.
Park, A. H. A., and Fan, L. S., CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process, Chemical Engineering Science, 59, 22–23, 5241–5247, 2004.
Parkhurst, D. L., and Appelo, C. A. J., User's guide to PHREEQC (version 2)—A computer Program for Speciation, Batch–reaction, One–dimensional Transport, and Inverse Geochemical Calculations, 1999.
Pruess, K., Oldenburg, C., and Moridis, G., TOUGH2 user's guide, version 2.0, Lawrence Berkeley National Laboratory Report LBNL–43134, University of California, Berkeley, CA, 1999.
Pruess, K., and Battistelli, A., TMVOC, a numerical simulator for three–phase non–isothermal flows of multicomponent hydrocarbon mixtures in saturated–unsaturated heterogeneous media, Lawrence Berkeley National Laboratory Report LBNL–49375, Berkeley, CA, 2002.
Reed, M. H., Calculation of multicomponent chemical–equilibria and reaction processes in systems involving minerals, gases and an aqueous phase, Geochimica Et Cosmochimica Acta, 46, 4, 513–528, 1982.
Schlumberger, Eclipse Technical Manual, 2008.
Singleton, M. J., Sonnenthal, E. L., Conrad, M. E., DePaolo, D. J., and Gee, G. W., Multiphase reactive transport modeling of seasonal infiltration events and stable isotope fractionation in unsaturated zone pore water and vapor at the Hanford site, Vadose Zone Journal, 3, 3, 775–785, 2004.
Smith, J. V., and Brown, W. L., Feldspar minerals, Springer–Verlag, New York, 1988.
Sonnenthal, E., and Spycher, N., Drift–scale coupled processes model: analysis and model report (AMR) N0120/U0110, Yucca Mountain Nuclear Waste Disposal Project, Lawrence Berkeley National Laboratory, Berkeley, CA, 2000.
Spycher, N. F., and Reed, M. H., Fugacity coefficients of H2, CO2, CH4, H2O and of H2O–CO2–CH4 mixtures – a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling, Geochimica Et Cosmochimica Acta, 52, 3, 739–749, 1988.
Spycher, N. F., Sonnenthal, E. L., and Apps, J. A., Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada, Journal of Contaminant Hydrology, 62–3, 653–673, 2003.
Steefel, C. I., and Lasaga, A. C., A coupled model for transport of multiple chemical–species and kinetic precipitation dissolution reactions with application to reactive flow in single–phase hydrothermal systems, American Journal of Science, 294, 5, 529–592, 1994.
Todaka, N., Akasaka, C., Xu, T. F., and Pruess, K., Reactive geothermal transport simulations to study the formation mechanism of an impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan, Journal of Geophysical Research–Solid Earth, 109, B5, 2004.
Tsang, C. F., Benson, S. M., Kobelski, B., and Smith, R. E., Scientific considerations related to regulation development for CO2 sequestration in brine formations, Environmental Geology, 42, 2–3, 275–281, 2002.
Xu, T. F., Sonnenthal, E., Spycher, N., Pruess, K., Brimhall, G., and Apps, J., Modeling multiphase non–isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 2. Applications to supergene copper enrichment and hydrothermal flows, American Journal of Science, 301, 1, 34–59, 2001.
Xu, T. F., Apps, J. A., and Pruess, K., Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations, Journal of Geophysical Research–Solid Earth, 108, B2, 2003.
Xu, T. F., Apps, J. A., and Pruess, K., Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry, 19, 6, 917–936, 2004.
Xu, T. F., Sonnenthal, E., Spycher, N., and Pruess, K., TOUGHREACT – A simulation program for non–isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Computers & Geosciences, 32, 2, 145–165, 2006.
Xu, T. F., Sonnenthal, E., Spycher, N., and Pruess, K., TOUGHREACT User's Guide: A Simulation Program for Non–isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1. 2.1, Lawrence Berkeley National Laboratory Report LBNL–55460, Berkeley, CA, 2008.
Yeh, G. T., and Tripathi, V. S., A model for simulating transport of reactive multispecies components – model development and demonstration, Water Resources Research, 27, 12, 3075–3094, 1991.
Zhang, K., Wu, Y.–S., and Pruess, K., User's guide for TOUGH2–MP–A Massively Parallel Version of the TOUGH2 code, Lawrence Berkeley National Laboratory Report LBNL–315E, Berkeley, CA, 2008.
張堯婷, 超臨界二氧化碳–水–長石系統之礦物及化學反應, 國立成功大學地球科學所碩士論文, 2011.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw