進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201119443700
論文名稱(中文) 金奈米粒子對於增強型光熱療法在尿路上皮癌之應用
論文名稱(英文) Utilization of Gold Nanoparticles for Enhanced Photo-thermal Therapy on Urothelial Carcinoma
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 吳宜臻
研究生(英文) Yi-Jhen Wu
學號 p86984104
學位類別 碩士
語文別 英文
論文頁數 46頁
口試委員 指導教授-陳家進
口試委員-張憲彰
口試委員-葉明龍
口試委員-曾淑芬
口試委員-Robert Rieger
中文關鍵字 金奈米粒子  光熱療法  尿路移形上皮癌  輔助治療 
英文關鍵字 Gold nanoparticles  Photothermal therapy  Transitional cell carcinoma  Adjuvant therapy 
學科別分類
中文摘要 本研究中主要目的為運用金奈米粒子(Gold nanoparticle)之特殊光學及光熱轉換特性於表淺性膀胱上皮癌的治療。由於此高度復發特性之尿路移形上皮癌細胞會大量表現穿膜醣蛋白-表皮生長因子受體(Epidermal growth factor receptor)以及黏蛋白Mucin7,因此本研究利用金奈米粒子外接上此半抗體來標定膀胱癌細胞之位置,運用奈米粒子之電漿子共振帶吸收特定雷射波長來針對非浸潤性癌作治療,金奈米粒經由光能轉化為熱能進而殺死癌細胞。實驗中含括細胞與動物實驗,目前之研究成果已於一株老鼠、三株人類上皮膀胱癌細胞株(MBT2, T24, 9202, 8301)上作了治療效果。發現於10 W/cm2,1.6 Hz,300 ms時癌細胞即開始產生凋亡的現象,其使用能量僅為單照射雷射能量之一半,並隨著雷射能量與照射之時間呈現正比之現象,確定了光熱治療之成效。另外於動物實驗上,已建立了C3H mice之原位動物膀胱癌模式來做為動物體外之治療實驗(ex-vivo study),並於體外膀胱培養後經切片觀察治療完時與治療後組織變化的情形,發現腫瘤細胞經治療後會產生凋亡現象,並隨著時間而逐漸脫離膀胱黏膜層;相反的,大部分正常組織皆不受影響,並且可以維持著原本的組織架構。以此輔助性治療(adjuvant therapy)的方式來針對普遍的表淺泌尿上皮癌,期望改善以往之卡介苗(Bacillus Calmette-Guerin)或化療(Chemotherapy)等輔助之治療方式,降低治療後之負作用以及其高復發率。
英文摘要 The aim of this study is to apply photothermal therapy (PTT) to treat superficial urothelial cancer using the unique optical properties of gold nanoparticles (GNPs). Because the epidermal growth factor receptor (EGFR) and Mucin7 can be over-expressed in this high recurrence of transitional cell carcinoma (TCC), the GNPs were conjugated with these semi-antibodies for tumor targeting. Under the exposure of green light laser of 532 nm, adequate thermal energy can be produced to kill the superficial TCC. This study includes cell lines and ex-vivo animal experiments to verify the therapeutic effect. Our results indicated that all of the cancer cells (MBT2, T24, 9202, 8301) were killed at a relatively lower energy (10 W/cm2, 1.6 Hz with 300 ms) compared with the group without added GNPs. Also, the damage was directly related to the applied laser energy and irradiation time. For the animal study, we have established the C3H mice orthotopic bladder cancer animal model. Although the tumor site was extensively damaged (necrosis) without discernible tumor cells in the bladder of C3H mice, the overall structure of subepithelial stroma and muscularis propria were still maintained. Our studies demonstrated that the influence of PTT on tumors were more effective than the normal tissue. This adjuvant therapy with specific semi antibody/GNPs not only reduces the high recurrence rate of TCC but also avoids the side effects from traditional intravesical chemotherapy and immune therapy.
論文目次 中文摘要 I
Abstract II
致謝 III
Content IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Introduction of urinary bladder carcinoma 1
1.1.1 The types and proportions of bladder cancer 1
1.1.2 The therapy of superficial bladder cancer 2
1.2 Introduction of gold nanoparticles 3
1.2.1 The properties of gold nanoparticles 4
1.2.2 Optical properties of gold nanoparticle- surface plasma resonance 5
1.2.3 Plasmonic photothermal therapy 7
1.3 Applications of gold nanoparticles in cancer treatment and detection 7
1.4 Orthotopic bladder cancer animal model 10
1.5 Motivations and objectives 11
Chapter 2 Materials and Methods 12
2.1 Research framework 12
2.2 Culture of bladder tumor cells 13
2.3 Immunofluorescence staining 13
2.3.1 Confocal spectral microscope 13
2.3.2 Flow cytometry assay 14
2.4 Synthesis of gold nanoparticles 15
2.5 Preparation of semi-antibodies for labeling gold nanoparticles 16
2.6 Validation processes of GNPs 17
2.6.1 Preparation of field emission scanning electron microscope sample 17
2.6.2 Preparation of transmission electron microscope sample 17
2.7 Experimental design of laser therapy 18
2.8 Animal model for orthotopic treatment of bladder cancer 20
2.9 Photothermal treatment on TCC animal model 21
Chapter 3 Results 22
3.1 Over-expression of EGFR in cancer cell lines 22
3.2 Preparation and characterization of GNPs 23
3.3 Semi-antibody and reaction of antibody/GNPs confirming 24
3.4 SEM and TEM image observations 25
3.5 In vitro laser experiment 28
3.5.1 Photothermal therapy of TCC cell lines 28
3.5.2 Measurement of temperature variation 31
3.6 Examination of C3H mice animal study 33
3.6.1 Orthotopic bladder cancer animal model 33
3.6.2 Photothermal therapy 34
Chapter 4 Discussion and Conclusion 38
References 41
參考文獻 [1] N. Sengupta, E. Siddiqui and F. H. Mumtaz, ”Cancers of the bladder,” J R. Soc Health., 124:228-229, 2004.
[2] M, Wakui and T. Shiigai, ”Urinary tract cancer screening through analysis of urinary
red blood cell volume distribution,” Int. J. Urol., 7:248-253, 2000.
[3] F. I. Kondylis, S. Demirci, L. Ladaga, P. Kolm and P. F. Schellhammer, ”Outcomes After Intravesical Bacillus Calmette-Guerin Are Not Affected By Substaging Of High Grade T1 Transitional Cell Carcinoma,” J Urol. 163:1120-1123, 2000.
[4] D. L. Lamm and F. M. Torti, “Bladder Cancer,” J Clin., 46:93-112, 1996.
[5] M. Puntoni, S. Zanardi, D. Branchi, S. Bruno, A. Curotto, M. Varaldo, P. Bruzzi, and A. Decensi, “Prognostic Effect of DNA Aneuploidy from Bladder Washings in Superficial Bladder Cancer,” Cancer Epi. Bio. Prev., 16:979-983, 2007.
[6] Z. Kirkali, T. Chan, M. Manoharan, F. Algaba, C. Busch, L. Cheng, L. Kiemeney, M. Kriegmair, R. Montironi, W.M. Murphy, I.A. Sesterhenn, M. Tachibana and J. Weider, ”Bladder cancer: epidemiology, staging and grading, and diagnosis,” Urology., 66:4-34, 2005.
[7] A. Quintero, J. Alvarez-Kindelan, R. J. Luque, R. Gonzalez-Campora, M. J. Requena, R. Montironi and A. Lopez-Beltran, ”Ki-67 MIB1 labelling index and the prognosis of primary TaT1 urothelial cell carcinoma of the bladder,” J Clin Pathol., 59:83-88, 2006.
[8] M.D. Shelley, H. Kynaston, J. Court, T.J. Wilt, B. Coles, K. Burgon and M.D. Mason, ”A systematic review of intravesical bacillus Calmette-Guérin plus transurethral resection vs transurethral resection alone in Ta and T1 bladder cancer,” BJU Int., 88:209-216, 2001.
[9] T. Gardmark, S. Jahnson, R. Wahlquist, H. Wijkstrom and P. U. Malmstrom, ” Analysis of progression and survival after 10 years of a randomized prospective study comparing mitomycin-C and bacillus Calmette-Guerin in patients with high-risk bladder cancer,” BJU Int., 99:817-820, 2007.
[10] R. J. Sylvester, M. A. Brausi, W. J. Kirkels, W. Hoeltl, F. Calais Da Silva, P. H. Powell, S. Prescott, Z. Kirkali, C. van de Beek, T. Gorlia and T. M. de Reijke, ” Long-Term Efficacy Results of EORTC Genito-Urinary Group Randomized Phase 3 Study 30911 Comparing Intravesical Instillations of Epirubicin, Bacillus Calmette-Gue’ rin, and Bacillus Calmette-Gue’rin plus Isoniazid in Patients with Intermediate- and High-Risk Stage Ta T1 Urothelial Carcinoma of the Bladder,” Eur. Urol., 57:766-773, 2010.
[11] M. C. Daniel and D. Astruc, ”Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem Rev., 104:293, 2004.
[12] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science., 271:933-937, 1996.
[13] Ph. Buffat and J. P. Borel, “Size Effect on the Melting Temperature of Gold Particles,” Phys. Rev. A., 6:2287-2298, 1976.
[14] T. A. El-Brolossy1, T. Abdallah1, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique,” Eur Phys J Special Topics., 153:361-364, 2008.
[15] S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem., 54:331-366, 2003.
[16] S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B., 103:4212-4217, 1999.
[17] X. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, “Plasmonic photothermal
therapy (PPTT) using gold nanoparticles,” Lasers Med Sci., 23:217-228, 2008.
[18] L. M. Veenendaal, A. de Jager, G. Stapper, I. H. Borel Rinkes and R. van Hillegersberg, ”Multiple fiber laser-induced thermotherapy for ablation of large intrahepatic tumors”, Photomed Laser Surg., 24:3-9, 2006.
[19] W. Lu, S. R. Arumugam, D. Senapati, A. K. Singh, T. Arbneshi, S. A. Khan, H. Yu and P. C. Ray, “Multifunctional Oval-Shaped Gold-Nanoparticle Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay,” J. Am. Chem. Soc., 4:1739-1749, 2010.
[20] G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res., 69:3892-3900, 2009.
[21] W. Lin, Y. W. Huang, X. D. Zhou and Y. Ma, “Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells,” Int J Toxicol., 25:451–457, 2006.
[22] I. S. Kim, M. Baek and S. J. Choi, “Comparative Cytotoxicity of Al2O3, CeO2, TiO2 and ZnO Nanoparticles to Human Lung Cells,” J. Nanosci. Nanotechnol., 10:3453-3458, 2010.
[23] C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris and D. Wingett, “Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles,” Nanotechnology., 19:295103, 2008.
[24] Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh and J. Cheon, “In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals,” J. Am. Chem. Soc., 127:12387-12391, 2005.
[25] J. Gao, X. Chen and Z. Cheng, “Near-Infrared Quantum Dots as Optical Probes for Tumor Imaging,” Curr Top Med Chem., 10: 1147-1157, 2010.
[26] X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung and S. M. Nie, “ In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol., 22:969-976, 2004.
[27] H. J. Huisman, J. J. Futterer, E. N. J. T. van Lin, A. Welmers, T. W. J. Scheenen, J. A. van Dalen, A. G. Visser, J. A. Vitjes, J. O. Barentsz, Prostate cancer, “Precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers,” Radiology., 236:311-317, 2005.
[28] C. J. Ackerson, M. T. Sykes, R. D. Kornberg, “Defined DNA/nanoparticle conjugates,” Proc. Natl. Acad. Sci. USA., 102:13383-13385, 2005.
[29] L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li and Y. Xia, “A Quantitative Study on the Photothermal Effect of Immuno Gold Nanocages Targeted to Breast Cancer Cells,” ACS Nano., 2:1645-1652, 2008.
[30] M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett., 9:287-291, 2009.
[31] I. H. El-Sayed, X. Huang and M. A. El-Sayed, “Selective Laser Photo-thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles,” Cancer Lett., 239:129-135, 2006.
[32] X. H. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc., 128:2115-2120, 2006.
[33] F. Y. Cheng, C. T. Chen and C. S. Yeh, “Comparative efficiencies of photothermal destruction of malignant cells using antibody- coated silica@Au nanoshells,hollow Au/Ag nanospheres and Au nanorods,” Nanotechnology., 20:425104, 2009.
[34] G. R. Reddy, M. S. Bhojani, P. McConville, J. Moody, B. A. Moffat, D. E. Hall, G. Kim, Y. E. L. Koo, M. J. Woolliscroft, J. V. Sugai, T. D. Johnson, M. A. Philbert, R. Kopelman, A. Rehemtulla and B. D. Ross, “Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors,” Clin Cancer Res., 12:6677-6686, 2006.
[35] J. L. Li, L. Wang, X. Y. Liu, Z. P. Zhang, H. C. Guo ,W. M. Liu and S. H. Tang, “Selective Laser Photo-In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles,” Cancer Lett., 274: 319-326, 2008.
[36] Z. Xiao, T. J. McCallum, K. M. Brown, G. G. Miller, S. B. Halls, I. Parney and R. B. Moore, “Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model,” Br. J. Cancer., 81:638-646, 1999.
[37] G. J. Villares, M. Zigler, K. Blehm, C. Bogdan, D. McConkey, D. Colin and Menashe Bar-Eli, “Targeting EGFR in bladder cancer,” World J Urol., 25:573-579, 2007.
[38] M. Kinjo, T. Okegawa, S. Horie, K. Nutahara and E. Higashihara, “Detection of circulating MUC7-positive cells by reverse transcription-polymerase chain reaction in bladder cancer patients,” Int J Urol., 11:38-43, 2004.
[39] A. Bhatia, P. Dey, Y. Kumar, U. Gautam, N. Kakkar, R. Srinivasan and R. Nijhawan, “Expression of cytokeratin 20 in urine cytology smears: a potential marker for the detection of urothelial carcinoma,” Cytopathology., 18:84-86, 2007.
[40] B. D. Chithrani, A. A. Ghazani and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett., 6:662-668, 2006.
[41] P. Decuzzi, S. Lee, B. Bhushan and M. Ferrari, “A Theoretical Model for the
Margination of Particles within Blood Vessels,” Ann Biomed Eng., 33:179-190, 2005.
[42] C. H. Chen, Y. J. Wu, H. S. W. Chang, W. C. Chen and J. J. Chen, “Photothermal
Therapy of Urothelial Cancer Using Anti-EGFR/au Nanoparticles,” IFMBE Proc., 31:1185-1188, 2010.
[43] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich
Method for Gold Nanoparticle Synthesis Revisited,” J. Phys. Chem. B., 110:15700-15707, 2006.
[44] J. D. Hirsch and R. P. Haugland, Conjugation of Antibodies to Biotin, Humana Press, 2005.
[45] S. Yoshitake, Y. Yamada, E. Ishikawa. R. Masseyeff, “Conjugation of glucose oxidase from Aspergillus niger and rabbit antibodies using N-hydroxysuccinimide ester of N-(4-carboxycyclohexyl-methyl)-maleimide,” Eur J Biochem., 101:395-399, 1979.
[46] C. R. Estrada, M. Salanga, D. R. Bielenberg, W. B. Harrell, D. Zurakowski, X, Zhu, M. R. Palmer, M. R. Freeman and R. M. Adam, “Behavioral profiling of human transitional cell carcinoma ex vivo,” Cancer Res., 66:3078-3086, 2006.
[47] A. M. Gobin, E. M. Watkins, E. Quevedo, V. L. Colvin and J. L. West, “Near-Infrared-Resonant Gold/Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent,” Small, 6:745-752, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw