進階搜尋


 
系統識別號 U0026-2408201117203000
論文名稱(中文) 屏東平原海水入侵之整治探討及氣候變遷引起海平面上升對海水入侵之影響評估
論文名稱(英文) A numerical investigation on the proposed strategy for improving saltwater intrusion in coastal aquifers of the Pingtung Plain and the potential impact due to seawater level rising
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 黃偉誠
研究生(英文) Wei-Cheng Huang
學號 N86984056
學位類別 碩士
語文別 中文
論文頁數 83頁
口試委員 指導教授-羅偉誠
口試委員-蔡長泰
口試委員-李振誥
口試委員-譚義績
口試委員-陳主惠
中文關鍵字 海水入侵  海平面上升  地下水模擬  溶質傳輸模擬 
英文關鍵字 seawater intrusion  seawater level rising  groundwater simulation  solute transport simulation 
學科別分類
中文摘要   台灣降雨分配不均,尤其在台灣南部有明顯的乾、溼季之分,因此常需以水庫調節用水量。而屏東平原位於台灣最南端,且水庫水源缺乏,雖然屏東平原為台灣地下水資源蘊藏量最豐沛的地區之一,但在長期抽取地下水使用的情況下已導致沿海地區遭受海水入侵。而近年來由於氣候變遷、全球暖化影響導致海平面上升,沿海海水定水頭增加,加劇海水入侵的嚴重。本研究使用SUTRA 地下水溶質傳輸模式,做為屏東平原海水入侵之整治探討及氣候變遷引起海平面上升對海水入侵之影響評估。
  本研究探討整治屏東平原海水入侵時所需的補注水量及補注井的配置,結果顯示若相同補注水量(1.5cms)的情況下,以群井排列整治海水入侵效果比以單井整治效果好。並使用屏東平原廢污水處理廠的處理水量,做為整治海水入侵時所需的補注水量。模擬結果顯示整治五年可使海水入侵往海側退707公尺;整治十年可使海水入侵往海側退1348公尺。
  本研究以高雄海平面上升速率7.3mm/yr模擬屏東平原海平面上升情境。結果顯示海平面上升在未遭受海水入侵之沿海地區會使海水入侵在十年內深入內陸299.3公尺;而對於原本就已經遭受海水入侵的較內陸部分,海平面上升在短期內不會使可飲用水位置(250ppm)往內陸移動,因此在整治海水入侵問題上可暫不考慮海平面上升對海水入侵的影響。
英文摘要 The distribution of precipitation in Taiwan is uneven, especially in southern Taiwan; for this reason, Taiwan often needs to use reservoirs to adjust water resources. The Pingtung Plain which locates at the southernmost part of Taiwan lacks reservoirs resources although it is one of the areas of the Taiwan’s most abundant groundwater resources. Since the groundwater in Pingtung has been over- pumped, the coastal aquifer of Pingtung has been intruded by seawater. In recent years, the rise of seawater level which increases the hydraulic head of seawater caused by climate change and global warming has severely exacerbated seawater intrusion. This study uses SUTRA, a model for the saturated unsaturated variable density groundwater flow with solute or energy transport, both to investigate the proposed strategies for improving saltwater intrusion in coastal aquifers of the Pingtung Plain and to evaluate the potential impact of seawater level rising on seawater intrusion.
This research aims at proposing the strategies for water quantities and selecting the location where the injection well will be placed to solve the problem of saltwater intrusion. Our simulation result shows that using the multiple wells are better than using the single well remediating saltwater intrusion when the total water quantities are the same. Moreover, the current study also utilizes the water from sewage treatment plants to deal with saltwater intrusion and, simulation results reveals that remediation in a five-year period could move saltwater intrusion to 707 meter seaward side and then a ten-year period could move to 1348 meter seaward side.
A seawater level rising rate in Kaohsiung 7.3mm/yr was considered to simulate the seawater level rising rate in the Pingtung Plain and the result has indicated that the seawater level rising would cause seawater intrusion landward 299.3 meter in the place which is not subjected to seawater intrusion in ten years. However, in the place which has been subjected to seawater intrusion, the seawater level rising would not influence the location of potable water 250ppm to move inland in a short term; therefore, it does not need to consider the effect of seawater level rising there in the remediation of saltwater intrusion.
論文目次 目錄
摘要...........................................................................................................................Ⅰ
Abstract.....................................................................................................................Ⅱ
誌謝.......................................................................................................................... Ⅳ
目錄...........................................................................................................................Ⅴ
表目錄...................................................................................................................... Ⅶ
圖目錄.......................................................................................................................Ⅷ
符號說明....................................................................................................................X

第一章 緒論................................................................................................................1
1.1 研究動機.................................................................................................1
1.2 文獻回顧.................................................................................................2
1.3 本文架構.................................................................................................5
第二章 SUTRA模式................................................................................................6
2.1 SUTRA模式介紹....................................................................................6
2.2 控制方程式.............................................................................................6
2.2.1 流體質量守恆................................................................................6
2.2.2 溶質質量守恆................................................................................7
第三章 研究區域描述............................................................................................13
3.1 前言.......................................................................................................13
3.2 屏東平原水文地質...............................................................................16
3.3 屏東平原地下水...................................................................................19
3.4 屏東平原海水入侵...............................................................................22
第四章 建立數值模式............................................................................................24
4.1 概念模式之建立...................................................................................25
4.2 邊界條件...............................................................................................25
4.3 數值模式之建立...................................................................................26
4.3.1 地下水位之率定..........................................................................29
4.3.2 氯鹽濃度之率定..........................................................................42
第五章 數值模擬與結果討論................................................................................46
5.1 海水入侵之整治探討...........................................................................46
5.1.1補注情況一(0.05 6cms)..............................................................49
5.1.2 補注情況二(0.25 6cms).............................................................52
5.1.3 補注情況三(0.05 30cms)...........................................................54
5.1.4 補注情況四..................................................................................58
5.1.5 補注情況五..................................................................................62
5.2 海平面上升對海水入侵之影響評估...................................................68
第六章 結論與建議................................................................................................78
6.1 結論.......................................................................................................78
6.2 建議.......................................................................................................79
參考文獻..................................................................................................................80
參考文獻 參考文獻
1. Bear, J. and Verruijt A, “Modeling groundwater flow and pollution,” D Reidel Publishing Company, Dordrecht, Holland, 1998.
2. Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D. and Herrera, I., Seawater Intrusion in Coastal Aquifers – Concepts, Methods and Practices, Kluwer Academic Publishers, 1999.
3. Cohen JE, Small C, Mellinger A, Gallup J, Sachs J, “Estimations of coastal populations,” Science, 278(2), 1211-1212, 1997.
4. Emekli, N., Karahanoglu, N., Yazicigil, H. and Doyuran, V., “Numerical simulation of saltwater intrusion in a groundwater basin,”Water Environment Research, 68(5), 855-866, 1996.
5. Gangopadhyay, S. and Das Gupta, A., “Simulation of Salt-Water Encroachment In A Multi-Layer Groundwater System, Bangkok, Thailand,” Hydrogeology Journal, 3(4), 74-88, 1995.
6. Ghassemi, F., Jakeman, A.J. and Jacobson, G., “Simulation of sea water intrusion,” Mathematics and Computer in simulation, 32, 71-76, 1990a.
7. Ghassemi, F., Jakeman, A.J. and Jacobson, G., “Mathematical modeling of sea water intrusion, Nauru Island,” Hydrological Processes, 4(3), 269-281, 1990b.
8. Gingerich, S.B. and Voss, C.I., “Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA,” Hydrogeology Journal, 13,436-450, 2005.
9. Kurniawan B, Jinno K, “Numerical transport model of chlorinate organic compounds in saturated porous media,” Memoirs of the faculty of engineering, Kyushu Univ, 66(2), 83-97, 2006.
10. Langevin, C.D. and Guo, W., “MODFLOW/MT3DMS–Based Simulation of Variable-Density Ground Water Flow and Transport” Ground Water, 44(3), 339-351, 2006.
11. Nishikawa, T., “Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA,” Hydrogeology Journal, 5(3), 60-74, 1997.
12. Oberdorfer, J.A., Hogan, P.J. and Buddemeier, R.W., “Atoll island hydrogeology: flow and freshwater occurrence in a tidally dominated system,” Journal of Hydrology, 120,327-340,1990.
13. Oki, D., Souza, W.R., Bohlke, E. and Bauer, G., “Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA.,” Hydrogeology Journal, 6(2), 243-26, 1998.
14. Oude Essink GHP, “Saltwater intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study,” Transp Porous Med, 43(1), 137-158, 2001.
15. Perera, E.D.P., Jinno, K., Tsutsumi, A. and Hiroshiro, Y., “Numerical study of salinity variation in a coastal aquifer: a case study of the motooka region in western Japan” Stochastic Environmental Research and Risk Assessment, 23(7), 957-965, 2009.
16. Price, J.S. and Woo, M.-K., “Studies of a subarctic coastal marsh. III. Modelling the subsurface water fluxes and chloride distribution,” Journal of Hydrology, 120, 1-13, 1990.
17. Reilly, T.E., “Simulation of dispersion in layered coastal aquifer system,” Journal of Hydrology, 114, 211-228, 1990.
18. Reilly, T.E., and Goodman, A.S., “Analysis of saltwater upconing beneath a pumping well,” Journal of Hydrology, 89, 169-204, 1987.
19. Souza, W.R. and Voss, C.I., “Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation,” Journal of Hydrology, 92, 17-41, 1987.
20. Ting, C.S., “Groundwater resources evaluation and management for Pingtung Plain, Taiwan” PHD. Thesis of Free University, Amsterdam, 1997.
21. Tseng, Y.U., Breaker, L.C. and Chang E.T.Y., “Sea level variations in the regional seas around Taiwan” Journal of Oceanography, 66, 27-39, 2010.
22. Underwood, M.R., Peterson, F.L. and Voss, C.I., “Groundwater lens dynamics of Atoll Island,” Water Resources Research, 28(11), 2889-2902, 1992.
23. Voss, C.I. and Andersson, J., “Regional flow in the Baltic Shield during Holocene coastal regression,” Ground Water, 31(6), 989-1006,1993.
24. Voss, C.I., Boldt, D. and Shapiro, A.M., A Graphical-User Interface for the U.S. Geological Survey's SUTRA Code using Argus ONE (for Simulation of Variable-Density Saturated-Unsaturated Ground-Water Flow with Solute or Energy Transport), U.S. Geological Survey, Open-File Report 97-421, 2001.
25. Voss, C.I., and Provost A.M., SUTRA A Model for Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport, U.S. Geological Survey, Water-Resources Investigations Report 02-4231, 2008.
26. Voss, C.I., and Souza, W.R., “Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone,” Water Resources Research, 23(10), 1851-1866, 1987.
27. Werner A.D. and Simmons C.T., “Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers,” Ground Water, 47(2), 2009.
28. Winston, R.B. and Voss, C.I., SutraGUI A Graphical User Interface for SUTRA, A Model for Ground-Water Flow with Solute or Energy Transport, U.S. Geological Survey, Open-File Report 03-285, 2004.
29. 陳忠偉,「濁水溪沖積散合適水位與海水入侵之研究」,國立成功大學資源工程學系碩士論文,2000。
30. 江崇榮,「屏東平原地下水之海水入侵」,經濟部中央地質調查所彙刊,第十三號,第25-50頁,民國八十九年六月。
31. 江崇榮、汪中和,「以氫氧同位素組成探討屏東平原之地下水補注源」,經濟部中央地質調查所彙刊,第十五號,第49-67頁,民國九十一年九月。
32. 江崇榮、陳瑞娥,「屏東平原地下水水源保護區劃定之芻議」,經濟部中央地質調查所彙刊,第十七號 ,第1-19頁,民國九十三年九月。
33. 江崇榮、黃智昭、陳瑞娥、費立沅,「屏東平原地下水補注量及抽水量之評估」,經濟部中央地質調查所彙刊,第十七號,第21-51頁,民國九十三年九月。
34. 吳建民、曾鈞敏,「屏東平原地下水數學模式之研究」,地下水資源及水質保護研討會論文專集,第237-253頁,1994。
35. 何春蓀,「臺灣地體構造的演變」,台灣地體構造圖說明書,第55-57頁,1982。
36. 經濟部水利署,「台灣地區地下水資源(94年修訂版)」,中華民國九十四年十二月。(執行單位:能邦科技顧問股份有限公司)
37. 田巧玲、周千里、程桂興,「屏東平原地表地下水聯合運用」,水資源管理季刊,中國明國九十年四月,第18-32頁。
38. 潘文健、李振誥、張國強、李如晃,「屏東平原地下水開採潛能之研究」,第五屆地下水資源及水質保護研討會,2002。
39. 辜國讚、張順年、曾鈞敏,「東港、林邊、佳冬及枋寮等鄉鎮地下水調查研究」,第六屆地下水資源及水質保護研討會,2004。
40. 經濟部水資源局,「台灣地區地下水觀測網水質調查分析及指標井選定研究成果報告(3/3) 」,中華民國八十八年。
41. 經濟部水利署,「屏東平原地表地下水聯合運用初步規劃」,中華民國八十九年。
42. 經濟部中央地質調查所,「台灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告」,中華民國九十一年六月。
43. 經濟部水利署,「台灣地區地下水文圖圖集繪製工作(1/4)期末報告」,中華民國九十二年十二月。
44. 經濟部水利署,「台灣地區地下水文圖圖集繪製工作(2/4)」,中華民國九十三年十二月。
45. 經濟部水利署,「廢污水處理回收補注地下水層再生利用之可行性先期研究計畫」,中華民國九十七年十二月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw