進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2408201115333900
論文名稱(中文) 活性氧參與在TGIF調控的膀胱癌細胞移行作用
論文名稱(英文) Reactive oxygen species are involved in TGIF-regulated migration of bladder cancer cells
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系碩博士班
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 99
學期 2
出版年 100
研究生(中文) 陳佩祺
研究生(英文) Pei-Chi Chen
學號 t36984069
學位類別 碩士
語文別 英文
論文頁數 52頁
口試委員 指導教授-黃暉升
口試委員-吳文正
口試委員-王育民
中文關鍵字 膀胱癌  活性氧化物  細胞移行作用 
英文關鍵字 bladder cancer  tgif  reactive oxygen species  cell migration 
學科別分類
中文摘要 尿路上皮細胞癌 (Urothelial carcinoma, UC) 在美國男性癌症中是第四大常見的癌症,並且是造成第九大的癌症死亡原因。然而,在台灣,尿路上皮細胞癌是屬於泌尿道系統中最常發生的癌症。但目前為止,對於尿路上皮細胞癌發生的真正機轉仍尚未完全被釐清。TGIF (TG-interacting factor) 是TGF-訊息傳導路徑的抑制分子,在許多癌症中已發現,TGIF 皆有過度表現的情況,但TGIF在腫瘤發生中的作用尚不清楚。根據之前我們的研究發現,分析臨床檢體切片結果顯示: 尿路上皮細胞癌病人中有較高的TGIF 表現,此意味著TGIF或許和尿路上皮細胞癌癌化的過程有相關。而此篇研究目的主要是想探討TGIF在尿路上皮細胞癌細胞中所調控的分子機制究竟為何。起初,我們比較非侵犯性膀胱癌細胞株RT4和侵犯性膀胱癌細胞株T24之間的差異,發現在T24中具有較高的細胞移行能力、活性氧化物的產生以及較多的TGIF和p67phox的表現量。接著,我們在膀胱癌細胞株RT4中,利用轉染技術將其TGIF過度表現,結果顯示: 隨著TGIF的過度表現,細胞的移行能力、侵入能力、NADPH oxidase (Nox) 的活性以及過氧化物的產生皆有顯著的上升,並且在Nox2 和p67phox 的mRNA和蛋白質的表現量也皆有明顯增加。相反地,我們在膀胱癌細胞株T24中,利用shRNA 將其TGIF的表現抑制,結果發現: 一旦TGIF的表現被抑制,細胞的移行能力、侵入能力、NADPH oxidase的活性以及過氧化物的產生也隨之被抑制下來,且在Nox2 和p67phox 的mRNA和蛋白質的表現量也皆有明顯地減少。另外,我們使用NADPH oxidase 的抑制劑 (Apocynin) 以及p67phox 的shRNA將TGIF所誘發的活性氧化物抑制掉,發現細胞的移行能力以及侵入能力皆有明顯的降低。因此,由以上初步的結果,我們認為TGIF 的表現有參與在癌化的過程中,並且在此過程中有伴隨著活性氧化物的增加及活化。然而,其中更詳細的調控機轉仍需更進一步的實驗去釐清。
英文摘要 Urothelial carcinoma (UC) of the bladder is the fourth most common cancer and is the ninth leading cause of death from cancer among men in the United States. However, in Taiwan, it is the most common malignancy of the urinary tract. TG-interacting factor (TGIF) is a nucleoprotein that belongs to the homeobox domain TALE family. It is a transcriptional co-repressor that inhibits TGF- signaling pathway. The accumulating evidence has shown TGIF is implicated in various types of human cancers, including liver cancer, gastric carcinoma and leukemia. In our previous studies, over-expressed TGIF was found in the high grade of urothelial carcinoma patients by using IHC assay. Presently, we found that the cellular migration activity, ROS generation, TGIF and p67phox expression in T24 (invasive) was higher than RT4 cells (non-invasive). In addition, over-expressed TGIF enhanced migration and invasion ability, NADPH oxidase (Nox) activity, superoxide production and NADPH oxidase mRNA levels in RT4 cells. In contrast, migration and invasion ability, NADPH oxidase activity, superoxide production and Nox mRNA levels were decreased by knockdown of TGIF expression in T24 cells. Moreover, TGIF-induced migration and invasion was significantly decreased by inhibition of NADPH oxidase activity with pharmacological inhibitor apocynin and by knockdown of p67phox expression in RT4 cells. Accordingly, we suggest that TGIF-induced ROS production might be associated with tumor progression of UC. However, the mechanisms of action should be further elucidated in the future.
論文目次 Index
Abstract in Chinese............I

Abstract in English...........II

Acknowledgement..............III

Index .........................V

Contents .....................VI

List of Figures..............VII

List of Appendix ........... VIII

List of Reagents.............IX


Contents
Introduction................... 1

Materials and Methods...........7

Results.........................22

Discussion......................27

Figures.........................33

References......................42

參考文獻 1.Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300.
2.Li, W.M., et al., The prognostic predictors of primary ureteral transitional cell carcinoma after radical nephroureterectomy. J Urol, 2009. 182(2): p. 451-8; discussion 458.
3.Crawford, J.M., The origins of bladder cancer. Lab Invest, 2008. 88(7): p. 686-93.
4.Youssef, R.F., et al., Molecular targets and targeted therapies in bladder cancer management. World J Urol, 2009. 27(1): p. 9-20.
5.Mitra, A.P. and R.J. Cote, Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol, 2009. 4: p. 251-85.
6.Massague, J., The transforming growth factor-beta family. Annu Rev Cell Biol, 1990. 6: p. 597-641.
7.Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003. 113(6): p. 685-700.
8.Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003. 425(6958): p. 577-84.
9.Maehara, Y., et al., Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol, 1999. 17(2): p. 607-14.
10.Subramanian, G., et al., Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res, 2004. 64(15): p. 5200-11.
11.Giannelli, G., et al., Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol, 2002. 161(1): p. 183-93.
12.Gaspar, N.J., et al., Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol, 2007. 72(1): p. 152-61.
13.Akhurst, R.J. and R. Derynck, TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol, 2001. 11(11): p. S44-51.
14.Derynck, R., R.J. Akhurst, and A. Balmain, TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 2001. 29(2): p. 117-29.
15.Pardali, K. and A. Moustakas, Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta, 2007. 1775(1): p. 21-62.
16.Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
17.Li, Y., et al., Inhibition of TGF-beta receptor I by siRNA suppresses the motility and invasiveness of T24 bladder cancer cells via modulation of integrins and matrix metalloproteinase. Int Urol Nephrol, 2010. 42(2): p. 315-23.
18.Izadifar, V., et al., Expression of transforming growth factor beta1 and its receptors in normal human urothelium and human transitional cell carcinomas. Hum Pathol, 1999. 30(4): p. 372-7.
19.Kim, J.H., et al., Predictive value of expression of transforming growth factor-beta(1) and its receptors in transitional cell carcinoma of the urinary bladder. Cancer, 2001. 92(6): p. 1475-83.
20.Champelovier, P., et al., In vitro tumoral progression of human bladder carcinoma: role for TGFbeta. Eur Urol, 2005. 48(5): p. 846-51.
21.Castillejo, A., et al., TGFB1 and TGFBR1 polymorphic variants in relationship to bladder cancer risk and prognosis. Int J Cancer, 2009. 124(3): p. 608-13.
22.Wotton, D., et al., A Smad transcriptional corepressor. Cell, 1999. 97(1): p. 29-39.
23.Bertolino, E., et al., A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem, 1995. 270(52): p. 31178-88.
24.Gripp, K.W., et al., Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet, 2000. 25(2): p. 205-8.
25.Borlak, J., et al., Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours. Oncogene, 2005. 24(11): p. 1809-19.
26.Hu, Z.L., et al., Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells. World J Gastroenterol, 2005. 11(1): p. 84-8.
27.Hamid, R. and S.J. Brandt, Transforming growth-interacting factor (TGIF) regulates proliferation and differentiation of human myeloid leukemia cells. Mol Oncol, 2009. 3(5-6): p. 451-63.
28.Voorter, C., et al., Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. Am J Pathol, 1995. 146(6): p. 1341-54.
29.Huang, H.S., et al., Opposite effect of ERK1/2 and JNK on p53-independent p21WAF1/CIP1 activation involved in the arsenic trioxide-induced human epidermoid carcinoma A431 cellular cytotoxicity. J Biomed Sci, 2006. 13(1): p. 113-25.
30.Liu, Z.M. and H.S. Huang, As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cell Signal, 2006. 18(2): p. 244-55.
31.Liu, Z.M. and H.S. Huang, Inhibitory role of TGIF in the As2O3-regulated p21 WAF1/CIP1 expression. J Biomed Sci, 2008. 15(3): p. 333-42.
32.Huang, H.S., Z.M. Liu, and D.Y. Hong, Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes. Toxicol Appl Pharmacol, 2010. 244(2): p. 234-41.
33.Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
34.Wu, W.S., The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 2006. 25(4): p. 695-705.
35.Eblin, K.E., et al., The role of reactive oxygen species in arsenite and monomethylarsonous acid-induced signal transduction in human bladder cells: acute studies. Toxicology, 2008. 250(1): p. 47-54.
36.Xie, D.H., et al., [Expression of NF-kappa B in human bladder cancer and its clinical significance]. Ai Zheng, 2002. 21(6): p. 663-7.
37.Levidou, G., et al., Clinical significance of nuclear factor (NF)-kappaB levels in urothelial carcinoma of the urinary bladder. Virchows Arch, 2008. 452(3): p. 295-304.
38.Hempel, N., et al., Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic Biol Med, 2009. 46(1): p. 42-50.
39.Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002. 82(1): p. 47-95.
40.Lambeth, J.D., T. Kawahara, and B. Diebold, Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med, 2007. 43(3): p. 319-31.
41.Bedard, K. and K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007. 87(1): p. 245-313.
42.Ushio-Fukai, M. and Y. Nakamura, Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett, 2008. 266(1): p. 37-52.
43.Lambeth, J.D., NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 2004. 4(3): p. 181-9.
44.Gianni, D., et al., Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal, 2009. 2(88): p. ra54.
45.Tominaga, K., et al., Evidence for cancer-associated expression of NADPH oxidase 1 (Nox1)-based oxidase system in the human stomach. Free Radic Biol Med, 2007. 43(12): p. 1627-38.
46.Lim, S.D., et al., Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate, 2005. 62(2): p. 200-7.
47.Shimada, K., et al., A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res, 2009. 69(7): p. 3157-64.
48.Reddy, M.M., et al., NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia, 2011. 25(2): p. 281-9.
49.Dyrskjot, L., et al., Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res, 2004. 64(11): p. 4040-8.
50.Govindarajan, B., et al., Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest, 2007. 117(3): p. 719-29.
51.Mochizuki, T., et al., Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 2006. 25(26): p. 3699-707.
52.Maranchie, J.K. and Y. Zhan, Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res, 2005. 65(20): p. 9190-3.
53.Si, J., et al., NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett's esophageal adenocarcinoma cells. J Biol Chem, 2007. 282(22): p. 16244-55.
54.Knowles, M.A., et al., Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev, 2009. 28(3-4): p. 305-16.
55.Wu, X., et al., The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int, 2004. 93(1): p. 143-50.
56.Leslie, N.R., et al., Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J, 2003. 22(20): p. 5501-10.
57.Benhar, M., D. Engelberg, and A. Levitzki, ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep, 2002. 3(5): p. 420-5.
58.Nakakuki, K., et al., Novel targets for the 18p11.3 amplification frequently observed in esophageal squamous cell carcinomas. Carcinogenesis, 2002. 23(1): p. 19-24.
59.Behrend, L., G. Henderson, and R.M. Zwacka, Reactive oxygen species in oncogenic transformation. Biochem Soc Trans, 2003. 31(Pt 6): p. 1441-4.
60.Marnett, L.J., Oxyradicals and DNA damage. Carcinogenesis, 2000. 21(3): p. 361-70.
61.Shin, I., et al., H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem, 2005. 280(15): p. 14675-83.
62.Huang, C., K. Jacobson, and M.D. Schaller, MAP kinases and cell migration. J Cell Sci, 2004. 117(Pt 20): p. 4619-28.
63.Wadhwa, P., et al., Cyclooxygenase-2 expression increases with the stage and grade in transitional cell carcinoma of the urinary bladder. Int Urol Nephrol, 2005. 37(1): p. 47-53.
64.Lo, I.C., J.M. Shih, and M.J. Jiang, Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci, 2005. 12(2): p. 377-88.
65.Gupta, A., S.F. Rosenberger, and G.T. Bowden, Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 1999. 20(11): p. 2063-73.
66.Rhyu, D.Y., et al., Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol, 2005. 16(3): p. 667-75.
67.Hsu, T.C., et al., Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med, 2000. 28(9): p. 1338-48.
68.Kim, M.H., et al., Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. Int J Oncol, 2005. 26(6): p. 1669-74.
69.Kawamura, K., et al., In situ gelatinolytic activity correlates with tumor progression and prognosis in patients with bladder cancer. J Urol, 2004. 172(4 Pt 1): p. 1480-4.
70.Di Carlo, A., et al., Urinary gelatinase activities (matrix metalloproteinases 2 and 9) in human bladder tumors. Oncol Rep, 2006. 15(5): p. 1321-6.
71.Kupferman, M.E., et al., Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am J Pathol, 2000. 157(6): p. 1777-83.
72.Karashima, T., et al., Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res, 2003. 9(7): p. 2786-97.
73.Mian, B.M., et al., Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res, 2003. 9(8): p. 3167-75.
74.Shinohara, M., et al., Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. J Biol Chem, 2007. 282(24): p. 17640-8.
75.Laurent, E., et al., Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer, 2008. 123(1): p. 100-7.
76.Yamaura, M., et al., NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res, 2009. 69(6): p. 2647-54.
77.Liu, Z.M., et al., Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem J, 2011.
78.Cadwallader, K.A., et al., Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents. J Immunol, 2002. 169(6): p. 3336-44.
79.Hoyal, C.R., et al., Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5130-5.
80.Edderkaoui, M., et al., NADPH oxidase activation in pancreatic cancer cells is mediated through Akt-dependent up-regulation of p22phox. J Biol Chem, 2011. 286(10): p. 7779-87.
81.Ozes, O.N., et al., NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999. 401(6748): p. 82-5.
82.Madrid, L.V., et al., Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 2000. 20(5): p. 1626-38.
83.Mansell, A., et al., Internalin B activates nuclear factor-kappa B via Ras, phosphoinositide 3-kinase, and Akt. J Biol Chem, 2001. 276(47): p. 43597-603.
84.Reddy, S.A., J.H. Huang, and W.S. Liao, Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-kappa B activation. J Immunol, 2000. 164(3): p. 1355-63.
85.Hayden, M.S. and S. Ghosh, Shared principles in NF-kappaB signaling. Cell, 2008. 132(3): p. 344-62.



論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw