進階搜尋


下載電子全文  
系統識別號 U0026-2408201013414600
論文名稱(中文) 利用電漿誘導接枝法製備兩性膜於電解產氫之研究
論文名稱(英文) Preparation of Bipolar Membranes Using Plasma-Induced Polymerization Method on Hydrogen Production from Water Electrolysis
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 李聖德
研究生(英文) Sheng-De Li
電子信箱 n3894111@mail.ncku.edu.tw
學號 n3894111
學位類別 博士
語文別 中文
論文頁數 149頁
口試委員 指導教授-陳志勇
口試委員-芮祥鵬
口試委員-邱文英
口試委員-李俊毅
口試委員-楊明長
口試委員-陳炳宏
口試委員-王政乾
中文關鍵字 電漿表面處理技術  電解水  兩性膜  超音波  水解離 
英文關鍵字 plasma treatment  water electrolysis  bipolar membranes  ultrasonic field  water splitting 
學科別分類
中文摘要 具有許多特殊性質的兩性膜(bipolar membrane)在工業用途上甚廣。一般來說,它可以用於製造酸/鹼性水溶液、廢水處理 (如:無機酸/鹼、有機酸及有機物分離回收和純化) 和食品工業上等應用。因此,相當受到工業和學術界的關注。本研究主要目的是利用兩性膜本身具有電場加強水解離的獨特特性,使用新穎的電漿表面處理技術,於PVDF膜表面的兩側分別誘導接枝具有陰/陽離子交換層的單體來形成兩性膜,並應用於電解產氫實驗。
本研究第一部分即使用電漿表面處理技術分別將2-methylacrylic acid 3-(bis-carboxymethylamino-2-hydroxy-propyl ester (G-I)、acrylic acid (AA)和4-styrene sulfonic acid sodium salt (SSS)等單體誘導接枝於PVDF膜或PES膜的兩側形成polyvinylidene fluoride-grafted-G-I (PVDF-g-G-I) bipolar membrane、AA-PVDF-G-I bipolar membrane、SSS-PVDF-G-I bipolar membrane和PES-g-G-I bipolar membrane等四種兩性膜。本實驗使用PES膜當作背景實驗,因為它與電極中間無薄膜時的電化學結果相同並且將它命名為Water。以PVDF-g-G-I bipolar membrane為例,進行製備酸/鹼能力測試和電解產氫之研究。在製備酸/鹼能力測試裡,使用PVDF-g-G-I bipolar membrane當作隔膜將水解離成H+與OH-的電位降低至0.88 V,並且發現當改變KCl濃度或者電解質種類時,它的臨界電位不會隨之改變,但它的極限電流密度會隨著KCl濃度和電解質的擴散係數增加而增加。而造成PVDF-g-G-I bipolar membrane電流效率低的原因有二:(1) 當發生水解離時,於中間層的水解離成H+與OH-,H+往陰極移動,而OH-往陽極移動。H+把陽離子交換層上的負電荷中和掉,而OH-把陰離子交換層上的正電荷中和掉;(2) PVDF-g-G-I bipolar membrane的膨潤度高達257 %,所以造成膜上固定濃度降低。在電解產氫實驗裡可以分為二部分:一、為改變基材實驗;二、替換陽離子交換層之單體單元(如:AA (-COO-)和SSS (-HSO3-)單體)。將製備出的兩性膜當作隔膜,藉由量測工作電位、產氫氣效率和能量消耗檢測它們電解產氫的表現。以Water系統為基準,當使用自製的兩性膜當作隔膜時,它們的工作電位明顯地較Water系統低,由此可證明使用自製的兩性膜具有降低工作電位之能力。而且因為電場加強水解離之效應,其產氫氣效率也因而提升10-20 %左右,這是由於電場加強水解離之效應所引起。於產氫氣所需能量消耗方面,自製的兩性膜系統中皆可以減低產氫氣能量消耗約30 %左右。
本文第二部分即是設計電解產氫反應器。將超音波系統用於電解產氫反應,試著將電極、薄膜表面及電解液中的氣泡移除,進而降低氣泡所造成的歐姆阻力。其電解產氫的表現則以減少工作電位、產氣體效率及能量消耗來呈現 (Water 系統)。以無超音波環境為基準,分別於0.1、0.5和1.0 M NaOH水溶液在超音波環境中減少320、100和75 mV的工作電位。當處於超音波環境時,在產氫氣效率明顯地提升5-18 %。然而,在產氧氣效率則是有些許的下降,這是由於氫氣和氧氣於電極表面的動態行為不同所造成。從產氫氣能量消耗來說,使用超音波系統可以減少10-25 %的能量;再以經濟方面考量,使用超音波系統確實有益於電解產氫反應。最後,將超音波系統與自製的兩性膜結合,以PVDF-g-G-I bipolar membrane為例,於有超音波輔助下,仍然可以比相對應下的Water系統減少約4-8 %左右的能量。
英文摘要 Bipolar membranes have a lot of industrial applications because of their extraordinary properties. Generally speaking, they could be used to the fields of producing acid/base solutions, water treatment (ex. Separate to recycle and purify inorganic acid/base solution, organic acid and organic materials) and food industry. Therefore, industrial and academic researchers have attracted considerable attentions on this field. It is emphasized that bipolar membranes possess a characteristic property of the electrical field-enhanced water dissociation. As a result, the aim of the research is to investigate the surface modification of the PVDF membrane to form the bipolar membranes after plasma treatment and subsequently using the bipolar membranes to hydrogen production from water electrolysis.
In the first section of this study, the G-I, AA and SSS monomers were grafted onto the respective side of the PVDF or PES membranes after plasma treatment and then, the four kinds of the bipolar membranes have been successfully prepared by plasma-induced polymerization method (PVDF-g-G-I, AA-PVDF-G-I, SSS-PVDF-G-I and PES-g-G-I bipolar membranes). PES membrane as diaphragms was used as background experiment and marked as“Water”. The reason is that the result of the electrochemical properties for PES membrane used was the same as that for no membrane between the electrodes. Take PVDF-g-G-I bipolar membrane as an example, it was carried out the measurements of the ability to produce acid/base solution and hydrogen production from water electrolysis. In producing acid/base solution, the critical voltage of water splitting to H+ and OH- could be reduced to 0.88 V by using the PVDF-g-G-I bipolar membrane. In addition, the value of the critical voltage by using the PVDF-g-G-I bipolar membrane was the same when the electrolyte concentration was increased or the kinds of the electrolyte was altered. On the other hand, the value of the limiting current density was increased with the KCl concentration and the diffusion coefficient of the electrolyte. There are two reasons for lower current efficiency of the PVDF-g-G-I bipolar membrane. (1) when water dissociation was occurred, H2O was dissociated into H+ and OH- within it. H+ was migrated to cathode electrode and OH- was moved to anode electrode under the electrical field. The negative charge on cation exchange layer was neutralized by H+ ion. Contractly, the positive charge on anion exchange layer was neutralized by OH- ion. (2) The fixed charge concentration on the PVDF-g-G-I bipolar membrane was reduced in the solution phase due to high swelling ratio. It is divided from two part of hydrogen production from water electrolysis. One part is to change the base membranes and second part is to alter cation exchange layers of the PVDF-g-G-I bipolar membrane (using AA (-COO-) and SSS (HSO3- ) monomers). The performance of water electrolysis for the cell operated with or without the self-made bipolar membranes is demonstrated by measuring the cell voltage, H2 production efficiency and the energy consumption of the H2 generation. The cell voltage using the self-made bipolar membranes is obviously lower than that of Water. The data demonstrates that the bipolar membranes prepared by plasma-induced polymerization had a great ability to reduce the cell voltage of water electrolysis and H2 production efficiency was improved 10-20 % by using them (compared with Water). The reason is due to the effect of the electrical field-enhanced water dissociation. From the energy consumption of H2 production, an energy saving of 30 % could be reached for the cell operated with the self-made bipolar membranes (compared with Water).
In the second section of this study, it was the design of the reactor of water electrolysis. The ultrasonic field was applied into water electrolysis to remove the bubbles gas adhering onto the surface of the electrodes, membrane and in the solution. By removing the bubbles gas, the ohmic drop was reduced. The performance for the cell operated with or without an ultrasonic field is demonstrated by measuring the reduction in cell voltage, the efficiency and energy consumption of the generated gas (Water system). The reference sample was based on Water system for the cell operated without an ultrasonic field. The reduction in cell voltage was 320, 100 and 75 mV under 0.1, 0.5 and 1.0 M NaOH when current density is 200 mA/cm2, respectively. H2 production efficiency was improved 5-18 % in the presence of an ultrasonic field and however, O2 production efficiency was reduced a little bit. It is due to the difference between the dynamic behavior of H2 and O2 gas adhering onto the electrodes. For the energy consumption of H2 production, it could be reduced 10-25 % under an ultrasonic field. From economic consideration, the ultrasonic field applied into alkaline water electrolysis was beneficial to energy efficiency of water electrolysis. Finally, the ultrasonic field and the self-made bipolar membranes were combined to improve H2 production from water electrolysis. Take the PVDF-g-G-I bipolar membrane as an example, the energy consumption of H2 production was obviously reduced 4-8 % for the cell operated with the ultrasonic field (in comparison with Water), respectively.
論文目次 中文摘要 I
英文摘要 III
誌謝 VII
目錄 IX
方案目錄 XIII
表目錄 XIV
圖目錄 XV

第一章 緒論 1

第二章 文獻回顧 6
2-1 產氫技術的簡介 6
2-1-1 石化燃料製氫 6
2-1-2 生物體製氫技術 9
2-1-3 太陽能製氫技術 12
2-1-4 電解製氫技術 14
2-2 兩性膜簡介和理論 18
2-3 兩性膜之製備方法 24
2-4 兩性膜工業上的應用 26
2-4-1 污染控制/資源回收的應用 26
2-4-2 工業程序上的應用 29
2-4-2-1 有機酸的回收 29
2-4-2-2 氨基酸的回收與生產 36
2-4-2-3 食品工業上的應用 36
2-4-3 兩性膜水解離技術於其他應用 40
2-4-3-1 醇類的電透析解離 40
2-4-3-2 甲基磺酸的再生 42
2-4-3-3 涉及兩性膜和離子交換樹脂的過程 42
2-5 研究方法與目的 42

第三章 實驗部分 46
3-1 藥品、基材及電極 46
3-2 儀器設備 47
3-3 實驗步驟 48
3-3-1 螯合性單體G-I的合成 48
3-3-2 電漿表面改質接枝高分子聚合物之製備 48
3-3-3 兩性膜之製備 50
3-4 分析方法 50
3-4-1 單體接枝於PVDF膜上之分析 50
3-4-2 兩性膜之電化學特性質分析 51

第四章 兩性膜於電解產氫之研究 58
4-1 新穎兩性膜(PVDF-g-G-I bipolar membrane)之製備與電化學特性探討 58
4-1-1 G-I單體電漿誘導接枝於PVDF膜且形成兩性膜之鑑定分析62
4-1-2 PVDF-g-G-I bipolar membrane電化學特性 66
4-2 新穎兩性膜(G-I grafted bipolar membranes)運用於電解產氫系統73
4-2-1 製備G-I grafted bipolar membranes與組成分析鑑定 75
4-2-2 G-I grafted bipolar membranes之電化學曲線圖 80
4-2-3 以G-I grafted bipolar membranes當作隔膜之產氫效率及能量消耗 88
4-3 改變陽離子交換層之官能基探討於電解產氫系統之影響 93
4-3-1 製備和檢測SSS-PVDF-G-I bipolar membrane和AA-PVDF-G-I bipolar membrane 93
4-3-2 各兩性膜之穩定狀態電流-電位曲線圖 102
4-3-3 各兩性膜產氫氣效率與能量消耗之影響 105
4-4 超音波系統於電解產氫反應之影響 109
4-4-1 導入超音波系統對工作電位、產氫反應(hydrogen evolution reaction, HER)及產氧反應(oxygen evolution reaction, OER) 110
4-4-2 導入超音波環境對於產氫氣效率之影響 116
4-4-3 導入超音波環境對於產氧氣效率之影響 117
4-4-4 超音波對產生氣體能量消耗的影響 123
4-5 探討PVDF-g-G-I bipolar membrane結合超音波運用於電解產氫之影響 129
4-5-1 超音波和PVDF-g-G-I bipolar membrane於穩定狀態極化之影響 129
4-5-2 在超音波環境下使用PVDF-g-G-I bipolar membrane當作隔膜對於產氣體效率與能量消耗影響 134

第五章 結論 137

參考文獻 142
論文著作 148
自述 149
參考文獻 1.毛宗強, 氫能-21世紀的綠色能源, 化學工業出版社, 2006.
2.丁福臣, 易玉峰, 製氫儲氫技術, 化學工業出版社, 2006.
3.R.L. LeRoy, M.B.I. Janjua, R. Renaud, U. Leuenberger, J. Electrochem. Soc., 126, 1674, 1979.
4.S. Kim, N. Koratkar, Appl. Phys. Lett., 88, 263106, 2006.
5.Z. Hu, M. Wu, Z. Wei, S. Song, P.K. Shen, J. Power Sources, 166, 458, 2007.
6.A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold, Int. J. Hydrogen Energy, 32, 2320, 2007.
7.S. Grigoriev, V. Porembsky, V. Fateev., Int. J. Hydrogen Energy, 31, 171, 2006.
8.E. Rasten, Electrocatalysis in water electrolysis with solid polymerelectrolyte, PhD thesis, NTNU, Trondheim, Norway; 2001.
9.J. Sedlak, R. Lawrence, J. Enos, Int. J. Hydrogen Energy, 6,159, 1981.
10.H. Takenaka, E. Torikai, Y. Kawami, N. Wakabayashi, Int. J. Hydrogen Energy, 7, 397, 1982.
11.M. Yamaguchi, K. Okisawa, T. Nakanori, Development of high performance solid polymer electrolyte water electrolyzer in WE-NET, In: Proceedings of the 32nd intersociety energy conversion engineering conference, vol. 3, p. 1958-65, 1997.
12.P. Millet, R. Durand, R. Pineri, Int. J. Hydrogen Energy, 15, 245, 1990.
13.M. Yamaguchi, K. Yagiuchi, K. Okisawa, R&D of high performance solid polymer electrolyte water electrolyzer in WE-NET. In: Proceedings of the 11th world hydrogen energy conference, vol. 11, p. 781–6, 1996.
14.D.L. Stoji´c, A.D. Maksi´c, M.P.M. Kaninski, B.- Ð. Ceki´c, ˇS.S. Miljani´c, J. Power Sources, 145, 278, 2005.
15.M.P.M. Kaninski, D.L. Stoji´c, Ð.– de P. Saponji, N.I. Potkonjak, ˇS.S. Miljani´c, J. Power Sources, 157, 758, 2006.
16.R.F. de Souza, J.C. Padilha, R.S. Goncalves, M.O. de Souza, J. Rault-Berthelot, J. Power Sources, 164, 792, 2007.
17.T. Take, K. Tsurutani, M. Umeda, J. Power Sources, 164, 9, 2007.
18.F. Vitse, M. Cooper, G.-G. Botte, J. Power Sources, 142, 18, 2005.
19.M.S. Seehra, S. Ranganathan, A. Manivannan, Appl. Phys. Lett., 90, 044104, 2007.
20.L. Soler, J. Macanás, M. Muňoz, J. Casado, Int. J. Hydrogen Energy, 31, 129, 2006.
21.H. Cheng, K. Scott, C. Ramshaw, J. Electrochem. Soc., 149, D172, 2002.
22.T. Iida, H. Matsushima, Y. Fukunaka, J. Electrochem. Soc., 154, E112, 2007.
23.T. Ohmori, K. Tachikawa, K. Tsuji, K. Anzai, Int. J. Hydrogen Energy, 32, 5094, 2007.
24.S. Lu, L. Zhuang, J. Lu, J. Membr. Sci., 300, 205, 2007.
25.F.G. Donnan, Z. Electrochem., 17, 572, 1911.
26.S. Mafé, P. Ramìrez, Acta Polymer, 48, 234, 1997.
27.B. Bauer, F.J. Gerner, H. Strathmann, Desalination, 68, 279, 1988.
28.R. Simons, J. Membr. Sci., 78, 13, 1993.
29.H. Strathmann, H.J. Rapp, B. Bauer, C.M. Bell, Desalination, 90, 303, 1993.
30.K. Shimizu, A. Tanioka, Polymer, 38, 5441, 1997.
31.N. Ya. Pivovarov, V.P. Greben, S.A. Ponomarenko, Russ. J. Electrochem., 30, 1113, 1994.
32.R. Simons, Electrochim. Acta, 30, 275, 1985.
33.J.C. Bassignana, H. Reiss., J. Membr. Sci, 15, 27, 1983.
34.A. Alcaraz, P. Ramìrez, S. Mafé, H. Holdik, B. Bauer, Polymer, 41, 6627, 2000.
35.G. Grossman, J. Phys. Chem., 80, 1616, 1976.
36.R. Simons, G. Khanarian, J. Membr. Biol., 38, 267, 1978.
37.L.C., Bassignana, H. Reiss, J. Membr. Sci., 15, 27, 1983.
38.S. Mafé, J.A. Manzanares, P. Ramìrez, Phys. Rev. A, 42, 6245, 1990.
39.R. Simons, J. Membr. Sci., 82, 65, 1993.
40.B. Kunst, B. Loverecek, Croat. Chem. Acta, 34, 219, 1962.
41.L. Onsager, J. Chem. Phys., 2, 599, 1934.
42.J.J. Krol, M. Jansink, M. Wessling, H. Strathmann, Sep. Purif. Technol., 14, 41, 1998.
43.R. Simons, Nature, 280, 824, 1979.
44.R. Simons, Electrochim. Acta, 29, 151, 1984.
45.T.J. Chou, A. Tanioka, J. Colloid Interf. Sci., 22, 576, 1999.
46.T.J. Chou, A. Tanioka, J. Electroanal. Chem., 462, 12, 1999.
47.T.J. Chou, A. Tanioka, J. Phys. Chem. B, 102, 7866, 1998.
48.T.J. Chou, A. Tanioka, J. Colloid Interf. Sci., 212, 293, 1999.
49.R. Simons, G. Khanarian, J. Membr. Sci., 38, 11, 1978.
50.V. Frilette, J. Phys. Chem., 60, 435, 1956.
51.F. Wilhelm, N.V.D. Vegt, M. Wessling, H. Strathmann, Bipolar membrane preparation, in: A.J.B. Kemperman (Ed.), Handbook Bipolar Membrane Technology, Twente University Press, Enschede, 2000, pp. 79–108.
52.J.H. Hao, C.X. Chen, L. Li, L.X. Yu, W.J. Jiang, J. Appl. Polym. Sci., 80, 1658, 2001.
53.F. de Körösy, Israel J. Chem., 3, 22, 1965.
54.R.Q. Fu, T.W. Xu, W.H. Yang, Z.X. Pan, J. Appl. Polym. Sci., 90, 572, 2003.
55.A. Jendrychowska-Bonamour, J. Chim. Phys. Phys. Chim. Biol., 70, 16, 1973.
56.Z. Xu, H. Gao, M. Qian, Y. Yu, G. Wan, B. Chen, Radiat. Phys. Chem., 42, 963, 1993.
57.E.A. Hegazy, H. Kamal, N. Maziad, A. Dessouki, Nucl. Instrum. Meth. Phys. Res. B, 151, 386, 1999.
58.R. El Moussaoui, H. Hurwitz, Single-film membrane-process for obtaining it and use thereof, U.S. Patent 5,840,192, 1998.
59.彭郁仁, 接枝型兩性膜的製備與性質之研究, 成大化工所碩士論文, 2000.
60.Y. Yokoyama, A. Tanioka, K. Miyasaka, J. Membr. Sci., 43, 165, 1989.
61.C.L. Hsueh, Y.J. Peng, C.C. Wang, C.Y. Chen, J. Membr. Sci., 219, 1, 2003.
62.C. Carmen, Desalin. Water Reuse, 4, 46, 1995.
63.R. Audinos, Chem. Eng. Technol., 20, 247, 1997.
64.A.T. Che´rif, J. Mole´nat, A. Elmidaoui, J. Appl. Electrochem., 27, 1069, 1997.
65.M. Paleogou, A. Thibault, P.Y. Wong, R. Thompson, R.M. Berry, Sep. Purif. Technol., 11, 159, 1997.
66.G. S. Trivedi, B.G. Shah, S.K. Adhikary, V.K. Indusekhar, R. Rangarajan, React. Funct. Polym., 28, 243, 1996.
67.G.S.Trivedi, B.G.Shah, S.K. Adhikary, R. Rangarajan, React. Funct. Polym., 39, 91, 1999.
68.N. Drouiche, H. Grib, N. Abdi, H. Lounici, A. Pauss, N. Mameri, J. Hazard. Mater., 170, 197, 2009.
69.A.J.B. Kemperman, 雙極膜技術手冊, 化學工業出版社,2004.
70.C.H. Huang, T.W. Xu, Y.P. Zhang, Y.H. Xue, G.W. Chen, J. Membr. Sci., 288, 1, 2007.
71.Y.H. Kim, S.H. Moon, J. Chem. Technol. Biotechnol., 76, 169, 2001.
72.Q.H. Wang, G.S. Cheng, X.H. Sun, B. Jin, Process Biochem., 41, 152, 2006.
73.C. A°kerberg, G. Zacchi, Bioresour. Technol., 75, 119, 2000.
74.J.S.J. Ferrer, S. Laborie, G. Durand, M. Rakib, J. Membr. Sci., 280, 509, 2006.
75.G.S. Trivedi, B.G. Shah, S.K. Adhikary, V.K. Indusekhar, R. Rangarajan, React. Funct. Polym., 32, 209, 1997.
76.S. Koter, A.Warszawski, Pol. J. Environ. Stud., 9, 45, 2000.
77.V. H´abov´a, K. Melzoch, M. Rychtera, B. Sekavov´a, Desalination, 163, 361, 2004.
78.E.G. Lee, S.H. Moon, Y.K. Chang, I.K. Yoo, H.N. Chang, J. Membr. Sci., 145, 53, 1998.
79.L. Madzingaidzo, H. Danner, R. Braun, J. Biotechnol., 96, 223, 2002.
80.H. Li, R. Mustacchi, C.J. Knowles,W. Skibar,G. Sunderland, I. Dalrymple, S.A. Jackman, Tetrahedron, 60, 655, 2004.
81.S. Novalic, T. Kongbangkerd, K.D. Kulbe, J. Membr. Sci., 166, 99, 2000.
82.G. Pourcelly, C. Gavach, Electrodialysis water splitting—application of electrodialysis with bipolar membranes, in: A.J.B. Kemperman (Ed.), Handbook on Bipolar Membrane Technology, Twente University Press, Enschede, The Netherlands, 2000, pp. 17–46.
83.T.W. Xu,W.H. Yang, Chem. Eng. Process, 41, 519, 2002.
84.T.W. Xu, W.H. Yang, J. Membr. Sci., 203, 145, 2002.
85.S. Novalic, K.D. Kulbe, Food Technol. Biotechnol., 36, 193, 1998.
86.P. Pinacci, M. Radaelli, Desalination, 148, 177, 2002.
87.S. Novalic, J. Okwor, K.D. Kulbe, Desalination, 105, 277, 1996.
88.L.X. Yu, J. Su, J. Wang, Desalination, 177, 209, 2005.
89.F. Alvarez, R. Alvarez, J. Coca, J. Sandeaux, R. Sandeaux, C. Gavach, J. Membr. Sci., 123, 61, 1997.
90.H. Strathmann, Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam, 2004.
91.L.X. Yu, A.G. Lin, L.P. Zhang, C.X. Chen, W.J. Jiang, Chem. Eng. J., 78, 153, 2000.
92.V. Cauwenberg, J. Peels, S. Resbeut, G. Pourcelly, Sep. Purif. Technol., 22/23, 115, 2001.
93.J.S. Tronc, `Inhibition des réactions de brunissement enzymatique du jus de pomme frais non clarifié par électro-dialyse' in Thése de Maítrise no. 14431, Université Laval: Sainte-Foy, QueÂbec, 1996.
94.J.S.Tronc, F. Lamarche, J. Makhlouf, J. Agric. Food Chem., 46, 829, 1998.
95.J.S.Tronc, F. Lamarche, J. Makhlouf, J. Food Sci., 1, 75, 1997.
96.L. Bazinet, F. Lamarche, R. Labrecque, R. Toupin, M. Boulet, D. Ippersiel, `Systematic Study on the Preparation of a Food Grade Soyabean Protein' in Report for the Canadian Electricity Association no 9326 U 987, Research and Development, Montreal, 1996.
97.L. Bazinet, F. Lamarche, R. Labrecque, D. Ippersiel, J. Agric. Food Chem., 45, 2419, 1997.
98.L. Bazinet, F. Lamarche, R. Labrecque, R. Toupin, M. Boulet, D. Ippersiel, Food Technol., 51, 52, 1997.
99.L. Bazinet, F. Lamarche, R. Labrecque, D. Ippersiel, `Optimization of Bipolar Membrane Electroacidification' in The Electrochemical Society, Proceedings Volume 97-6, 1997.
100.B. Nagel, `Kontinuierliche Herstellum von Hochwertingen Naturtruben Apfelsaften unter Einbeziehung der Zen-trifugaltechnik' FluÈssiges Obst. 1, 6-8, 1992.
101.J.J. Macheix, A. Fleuriet, J. Billot, Fruit Phenolics, pp. 10098, CRC Press, Boca Raton, FL, 1990.
102.A. Janovitz-Klapp, F. Richard, P.M. Goupy, J. Nicolas, J. Agric. Food Chem., 38, 926, 1990.
103.G.M. Saper, M.A. Ziolkowski, J. Food Sci., 52, 1732, 1987.
104.G.P. Zemel, C.A. Sims, M.R. Marshall, M. Balaban, J. Food Sci., 55, 562, 1990.
105.J.D. McCord, A. Kilara, J. Food Sci., 48, 1479, 1984.
106.L. Bazinet, F. Lamarche, D. Ippersiel, Trends Food Sci. Tech., 9, 107, 1998.
107.C.C. Wang, C.C. Chang, C.Y. Chen, , Macromol. Chem. Phys., 202, 882, 2001.
108.C.C. Wang, C.Y. Chen, J. Appl. Polym. Sci., 84, 1353, 2002.
109.C.C. Wang, W.S. Li, C.Y. Cheng, C.Y. Chen, J. Appl. Polym. Sci., 82, 3248, 2001.
110.C.C. Wang, H.G. Chen, H.B. Hsieh, C.Y. Chen, Polym. Adv. Technol., 14, 349, 2003.
111.C.H. Tseng, C.C. Wang, C.Y. Chen, J. Nanosci. Nanotechnol., 6, 1, 2006.
112.C.H. Tseng, C.C. Wang, C.Y. Chen, J. Phys. Chem. B, 110, 4020, 2006.
113.C.H. Tseng, C.C. Wang, C.Y. Chen, Nanotechnology, 17, 5602, 2006.
114.W.H. Hou, C.Y. Chen, C.C. Wang, Polymer, 44, 2983, 2003.
115.W.H. Hou, C.Y. Chen, C.C. Wang, Y.H. Huang, Electrochim. Acta, 48, 679, 2003.
116.W.H. Hou, C.Y. Chen, C.C.Wang, Solid State Ionics, 166, 39, 2004.
117.V.M. Rosa, M.B.F. Santos, E.P. Silva, Int. J. Hydrogen Energy, 20 697, 1995.
118.J. Kerres, G. Eigenberger, S. Reichle, V. Schramm, K. Hetzel, W. Schnurnberger, I. Seybold, Desalination, 104, 47, 1996.
119.Ph. Vermeiren, W. Adriansens, R. Leysen, Int. J. Hydrogen Energy, 21, 679, 1996.
120.Ph. Vermeiren,W. Adriansens, J.P.Moreels, R. Leysen, Int. J. Hydrogen Energy, 23, 321, 1998.
121.C. Gabrielli, F. Huet, M. Keddam, A. Macias, A. Sahar, J. Appl. Electrochem., 19, 617, 1989.
122.T.A. Betley, QWu, T. Van Voorhis, D.G. Norcera, Inorg. Chem., 47, 1849, 2008.
123.K. Qian, Z.D. Chen, J.J.J. Chen, J. Appl. Electrochem., 28, 1141, 1998.
124.N. Nagai, M. Takeuchi, T. Kimura, T. Oka, Int. J. Hydrogen Energy, 28, 35, 2003.
125.F. Hine, K. Murakami, J. Electrochem. Soc., 127, 292, 1980.
126.H. Matsushima, T. Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, K. Kuribayashi, Electrochim. Acta, 48, 4119, 2003.
127.H. Matsushima, Y. Fukunaka, K. Kuribayashi, Electrochim. Acta, 51, 4190, 2006.
128.R.J. Balzer, H. Vogt, J. Electrochem. Soc., 150, E11, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw