進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407202021154800
論文名稱(中文) 中高齡者採用行動支付共享自駕車之偏好研究─以LINE Pay為例
論文名稱(英文) A Preference Study of the Middle-aged Adults Using Mobile Payment on Shared Autonomous Vehicles:An Example of LINE Pay
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 108
學期 2
出版年 109
研究生(中文) 陳羿州
研究生(英文) Yi-Zhou Chen
學號 R96074042
學位類別 碩士
語文別 英文
論文頁數 113頁
口試委員 指導教授-胡大瀛
口試委員-陳文字
口試委員-蔡東峻
口試委員-廖彩雲
中文關鍵字 中高齡者  LINE pay  共享自駕車  離散選擇模型  Hybrid choice models 
英文關鍵字 Middle age  LINE pay  Shared autonomous vehicles  Discrete choice models  Hybrid choice models 
學科別分類
中文摘要 隨著老年人比例的增長,老年人所產生的議題逐漸深受關注。由於第二次世界大戰的嬰兒潮發生在1946年至1964年之間,意味著10年後65歲以上的人口將急劇增加,再加上根據Mckinsey的報告(Tyler Duvall, 2019),預估2040年在美國,共享自駕車可占所有旅途的50%。 此外,勞動部也將中高齡者的年齡範圍定義在45-65歲之間。因此本研究的問卷目標年齡為45歲以上,本研究將老年人分為45-54歲、55-64歲及65歲以上,
而近幾年的資通訊技術的發展極為快速,智慧型手機可以像電腦一樣驅動各式各樣軟體。根據資訊工業策進會(2017)的研究,台灣有91.5%的老人使用LINE是為了跟孩子溝通。再加上,自動駕駛汽車已經被研究多年,它們能夠透過各種傳感器感知周圍環境並自行行駛在道路上,在未來有可能於實際道路運行。
因此,本研究將探討中高齡者對於使用LINE pay支付共享自動駕駛汽車費用的偏好及接受度,並尋找哪些因素可能吸引或是影響他們使用這些新科技。 如上所述,本研究問卷分為四個部分,第一部分是根據結構方程模型(SEM)來構建使用LINE pay支付共享自動駕駛汽車費用之接受度的問題;第二部分調查個體選擇行為;第三部分為中高齡者的手機及交通運輸的使用習慣;最後則是社會經濟資料的調查。
研究最終目的是希望透過政策和策略增進中高齡對新技術的接受度。因此,本研究首先調查中高齡者的潛在變數,再將潛在變數與方案屬性變數進行綜合評估,此架構被稱為hybrid choice models。
英文摘要 As the percentage of older people is growing up, we must be proactive to focus on the issues generated by older people. Additionally, Taiwan has reached a developed country level. Due to World War II baby boom happened between 1946 and 1964, which means a dramatic increase in the population aged 65+ will happen after 10 years. However, McKinsey & Company’s report shows that multi-passenger robot-taxis could account for 500 billion miles traveled on US roads with the right infrastructure to enable shared mobility about 9 percent of the total by 2030, but they could account for 50 percent of all miles traveled by 2040. Besides, in Taiwan, according to the Act to promote the employment of middle age and senior workers, senior and middle-aged persons used in the Act are defined as the persons at the age of 45 to 65. Thus, the target of subjects in this study starts from 45 years old, and three groups are divided: 45-54, 55-64, and 65+.
Due to Information and Communication Technology rapidly develops, a smartphone is not only can make a phone call and send messages but also browse the Internet and run software programs like a computer. There are lots of applications, such as games, social media, and business-use programs that can run on the smartphone.
Besides, autonomous vehicles have been discussed for many years and they can perceive their surroundings and travel to different locations by themselves through a variety of sensors, such as radar, lidar, GPS, etc. Also, it owns many advantages, including improved fuel efficiency, reduced car crashes, increased safety, and decrease air pollution.
Additionally, according to National Communications Commission (2018) research, there are almost 40% of citizens are using LINE Pay as their main online payment system in 2018, so LINE pay is set as an example of mobile payment. Hence, this study focuses on exploring the factors that might attract or stop middle age to use LINE pay for SAV.
As mentioned above, there are four parts in the questionnaire of this study. The questions of latent variables of using LINE pay for SAV are listed in the first part. The choice behavior of whether middle age using LINE pay for SAV is investigated in the second part. The third part inquires about their living habit. Socio-economic status is surveyed in the final part. In summary, the purpose of this research is to enhance middle age adoption of new technologies through policy and strategies design. Thus, this research adopts structural equation modeling (SEM) to explore latent variables in the first step. Based on the result of SEM, hybrid choice models are constructed by adding those latent variables.
論文目次 Abstract i
摘要 iii
Contents v
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION 1
1.1 Research Motivation and Background 1
1.2 Research Objectives 4
1.3 Research Flow Chart 4
CHAPTER 2 LITERATURE REVIEW 8
2.1 The Middle Age and the Elderly 8
2.1.1 Definitions of the Middle Age and the Elderly 8
2.1.2 The Elderly Around the World 10
2.1.3 The Elderly in Taiwan 12
2.1.4 Research of the Elderly Using Advanced Technology 14
2.2 Smartphones 14
2.2.1 Smartphone Usage of Middle Age and the Elderly in Taiwan 14
2.2.2 Comparison of Online Payment Systems 16
2.3 Autonomous Vehicles 19
2.3.1 Features of Autonomous Vehicles 19
2.3.2 Shared Autonomous Vehicles 21
2.4 The Factors Affecting Technology Acceptance 21
2.5 Development of Technology Acceptance Model 23
2.6 Stated Preference Method 25
2.6.1 Defining the Stated Preference Method 25
2.6.2 Measurement Scale and Parameter Estimation 26
2.7 Summary 28
CHAPTER 3 RESEARCH METHODOLOGY 29
3.1 Research Framework 29
3.2 Discrete Choice Models 31
3.3 Structural Equation Modelling 34
3.4 Hybrid Choice Models 35
3.5 Hybrid Choice Models Design 38
3.6 Choice of Latent Variable 39
3.6.1 Definitions of Latent Variable 39
3.6.2 Assumptions of Latent Variable Constructs 41
3.6.3 Items of Latent Variable Constructs 44
3.7 Observable Attributes Design 47
3.8 Data Analysis 50
CHAPTER 4 EMPIRICAL ANALYSIS 51
4.1 Survey Design 51
4.2 Descriptive Statistics Analysis 54
4.3 Binary Logit Analysis 58
4.3.1 Variable Settings 58
4.3.2 Results of Binary Logit Analysis 59
4.4 Structural Equation Modelling 63
4.4.1 Measurement Model Analysis 63
4.4.2 Structural Equation Modelling Analysis 68
4.5 Hybrid Choice Models 75
4.5.1 Regression Analysis 76
4.5.2 Results of Hybrid Choice Models 83
4.5.3 Results of Hybrid Choice Models-Aged Under 55 86
4.5.4 Results of Hybrid Choice Models-Aged 55 and above 88
4.6 Elastic Analysis 90
4.7 Sensitivity Analysis 91
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 97
5.1 Conclusions 97
5.2 Suggestions 99
5.3 Limitations and Future Research 101
REFERENCES 102
APPENDIX A 109

參考文獻 Abdel-Aty, M. A., Kitamura, R., & Jovanis, P. P. (1997). Using stated preference data for studying the effect of advanced traffic information on drivers' route choice. Transportation Research Part C: Emerging Technologies, 5(1), 39-50.
Abou-Zeid, M., Ben-Akiva, M., Bierlaire, M., Choudhury, C., & Hess, S. (2010). Attitudes and value of time heterogeneity. Applied Transport Economics A Management and policy perspective, 523-545.
Agarwal, R., Sambamurthy, V., & Stair, R. M. (2000). The evolving relationship between general and specific computer self-efficacy—An empirical assessment. Information systems research, 11(4), 418-430.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39): Springer.
Al-Haderi, S. M. S. (2013). The effect of self-efficacy in the acceptance of information technology in the public sector. International Journal of Business and Social Science, 4(9).
Baki, R., Birgoren, B., & Aktepe, A. (2018). A Meta Analysis of Factors Affecting Perceived Usefulness and Perceived Ease of Use in the Adoption of E-Learning Systems. Turkish Online Journal of Distance Education, 19(4), 4-42.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122.
Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359-373.
Bansal, P., Kockelman, K. M., & Singh, A. (2016). Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transportation Research Part C: Emerging Technologies, 67, 1-14.
Ben-Akiva, M., & Bierlaire, M. (1999). Discrete choice methods and their applications to short term travel decisions. In Handbook of transportation science (pp. 5-33): Springer.
Ben-Akiva, M., McFadden, D., Gärling, T., Gopinath, D., Walker, J., Bolduc, D., . . . Morikawa, T. (1999). Extended framework for modeling choice behavior. Marketing letters, 10(3), 187-203.
Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., . . . Bunch, D. S. (2002). Hybrid choice models: progress and challenges. Marketing letters, 13(3), 163-175.
Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of choice and latent variable models. Perpetual motion: Travel behaviour research opportunities and application challenges, 431-470.
Ben-Akiva, M. E., Lerman, S. R., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand (Vol. 9): MIT press.
Braun, M. T. (2013). Obstacles to social networking website use among older adults. Computers in Human Behavior, 29(3), 673-680. doi:10.1016/j.chb.2012.12.004
Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies–Students’ behavior. Computers in Human Behavior, 72, 612-620.
Bunch, D. S., Bradley, M., Golob, T. F., Kitamura, R., & Occhiuzzo, G. P. (1993). Demand for clean-fuel vehicles in California: a discrete-choice stated preference pilot project. Transportation Research Part A: Policy and Practice, 27(3), 237-253.
Burns, L. D., Jordan, W. C., & Scarborough, B. A. (2013). Transforming personal mobility. The Earth Institute, 431, 432.
Chau, P. Y. (2001). Influence of computer attitude and self-efficacy on IT usage behavior. Journal of Organizational and End User Computing (JOEUC), 13(1), 26-33.
Chen, K., & Chan, A. H. S. (2014). Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM). Ergonomics, 57(5), 635-652. doi:10.1080/00140139.2014.895855
Chong, A. Y.-L. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), 1240-1247.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
Conci, M., Pianesi, F., & Zancanaro, M. (2009). Useful, social and enjoyable: Mobile phone adoption by older people. Paper presented at the IFIP Conference on Human-Computer Interaction.
Czaja, S. J., & Lee, C. C. (2009). Information technology and older adults. In Human-Computer Interaction (pp. 35-50): CRC Press.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Deng, Z., Mo, X., & Liu, S. (2014). Comparison of the middle-aged and older users’ adoption of mobile health services in China. International journal of medical informatics, 83(3), 210-224.
Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167-181.
Firnkorn, J., & Müller, M. (2015). Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments? Environmental Science & Policy, 45, 30-40.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior Reading, MA. Addison-Wesley. Ford, RC & Richardson, WD (1994). Ethical decision making: A review of the empirical literature. Journal of Business Ethics, 13, 205-221.
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
Gagliardi, F. A. (1995). The effects of group presentations on intentions to adopt smart card technology: a diffusion of innovations approach. Carleton University,
Hasan, B. (2007). Examining the effects of computer self-efficacy and system complexity on technology acceptance. Information Resources Management Journal (IRMJ), 20(3), 76-88.
Hensher, D. A. (1994). Stated preference analysis of travel choices: the state of practice. Transportation, 21(2), 107-133.
Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International journal of medical informatics, 101, 75-84.
Huffman, A. H., Whetten, J., & Huffman, W. H. (2013). Using technology in higher education: The influence of gender roles on technology self-efficacy. Computers in Human Behavior, 29(4), 1779-1786.
Igbaria, M. (1995). The effects of self-efficacy on computer usage. 23(6), 587-605. doi:10.1016/0305-0483(95)00035-6
Joe, J., & Demiris, G. (2013). Older adults and mobile phones for health: A review. Journal of Biomedical Informatics, 46(5), 947-954. doi:10.1016/j.jbi.2013.06.008
Johansson, M. V., Heldt, T., & Johansson, P. (2006). The effects of attitudes and personality traits on mode choice. Transportation Research Part A: Policy and Practice, 40(6), 507-525.
Kamargianni, M., & Polydoropoulou, A. (2013). Hybrid choice model to investigate effects of teenagers' attitudes toward walking and cycling on mode choice behavior. Transportation research record, 2382(1), 151-161.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
Kim, K. J., & Shin, D.-H. (2015). An acceptance model for smart watches: implications for the adoption of future wearable technology. Internet Research, 25(4), 527-541.
Klopping, I. M., & McKinney Jr, E. (2006). PRACTICE MAKES A DIFFERENCE: EXPERIENCE AND E-COMMERCE. Information Technology, Learning & Performance Journal, 24(1).
Kroes, E. P., & Sheldon, R. J. (1988). Stated preference methods: an introduction. Journal of transport economics and policy, 11-25.
Labbé, M., Laporte, G., Tanczos, K., & Toint, P. (2013). Operations research and decision aid methodologies in traffic and transportation management (Vol. 166): Springer Science & Business Media.
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432-2439.
Lee, J., Lee, D., Park, Y., Lee, S., & Ha, T. (2019). Autonomous vehicles can be shared, but a feeling of ownership is important: Examination of the influential factors for intention to use autonomous vehicles. Transportation Research Part C: Emerging Technologies, 107, 411-422.
Leong, L.-Y., Hew, T.-S., Tan, G. W.-H., & Ooi, K.-B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620.
Li, H., Liu, Y., & Heikkilä, J. (2014). Understanding the Factors Driving NFC-Enabled Mobile Payment Adoption: an Empirical Investigation. Paper presented at the PACIS.
Li, J., Ma, Q., Chan, A. H., & Man, S. (2019). Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Applied ergonomics, 75, 162-169.
Loo, B. P., Wong, S., & Hau, T. D. (2006). Introducing alternative fuel vehicles in Hong Kong: views from the public light bus industry. Transportation, 33(6), 605-619.
Louviere, J. J., & Woodworth, G. (1983). Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. Journal of marketing research, 20(4), 350-367.
Ma, Q., Chan, A. H., & Chen, K. (2016). Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Applied ergonomics, 54, 62-71.
MacKenzie, S. B., Lutz, R. J., & Belch, G. E. (1986). The role of attitude toward the ad as a mediator of advertising effectiveness: A test of competing explanations. Journal of marketing research, 23(2), 130-143.
Martín-Cejas, R. R. (2006). Tourism service quality begins at the airport. Tourism Management, 27(5), 874-877.
Mitzner, T. L., Boron, J. B., Fausset, C. B., Adams, A. E., Charness, N., Czaja, S. J., . . . Sharit, J. (2010). Older adults talk technology: Technology usage and attitudes. Computers in Human Behavior, 26(6), 1710-1721.
Mohamed, N., & Karim, N. S. A. (2012). Open Source E-learning Anxiety, Self-Efficacy and Acceptance–A Partial Least Square Approach. International Journal of Mathematics and Computers in Simulation, 6(4), 361-368.
Mokhtarian, P. L. (2016). Discrete choice models’ ρ2: A reintroduction to an old friend. Journal of choice modelling, 21, 60-65.
National Communications Commission. (2018). Communications Market Report.
National Highway Traffic Safety Administration. (2013). Preliminary Statement of Policy Concerning Automated Vehicles. Washington, DC.
NHTSA. (2015). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Ooi, K.-B., & Tan, G. W.-H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33-46.
Ozturk, A. B. (2016). Customer acceptance of cashless payment systems in the hospitality industry. International Journal of Contemporary Hospitality Management, 28(4), 801-817.
Park, J., Han, S. H., Kim, H. K., Cho, Y., & Park, W. (2013). Developing elements of user experience for mobile phones and services: survey, interview, and observation approaches. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(4), 279-293.
Pham, T.-T. T., & Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in Society, 43, 159-172.
Phang, C. W., Sutanto, J., Kankanhalli, A., Li, Y., Tan, B. C., & Teo, H.-H. (2006). Senior citizens' acceptance of information systems: A study in the context of e-government services. IEEE Transactions on Engineering Management, 53(4), 555-569.
Phillips, B. N., Martin, R. P., & Meyers, J. (1972). Interventions in relation to anxiety in school. In Anxiety (pp. 409-468): Elsevier.
Plaza, I., Martín, L., Martin, S., & Medrano, C. (2011). Mobile applications in an aging society: Status and trends. Journal of Systems and Software, 84(11), 1977-1988. doi:10.1016/j.jss.2011.05.035
Rejeski, W. J., & Mihalko, S. L. (2001). Physical Activity and Quality of Life in Older Adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(Supplement 2), 23-35. doi:10.1093/gerona/56.suppl_2.23
Schmidthuber, L., Maresch, D., & Ginner, M. (2018). Disruptive technologies and abundance in the service sector-toward a refined technology acceptance model. Technological Forecasting and Social Change, 119328.
Shaheen, S. A., & Cohen, A. P. (2013). Carsharing and personal vehicle services: worldwide market developments and emerging trends. International journal of sustainable transportation, 7(1), 5-34.
Simonson, M. R., Maurer, M., Montag-Torardi, M., & Whitaker, M. (1987). Development of a standardized test of computer literacy and a computer anxiety index. Journal of educational computing research, 3(2), 231-247.
Sun, P.-C., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & education, 50(4), 1183-1202.
Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 71, 143-163.
Tsai, J.-M., Cheng, M.-J., Tsai, H.-H., Hung, S.-W., & Chen, Y.-L. (2019). Acceptance and resistance of telehealth: The perspective of dual-factor concepts in technology adoption. International Journal of Information Management, 49, 34-44.
Tsai, M.-J. (2009). The model of strategic e-learning: Understanding and evaluating student e-learning from metacognitive perspectives. Journal of Educational Technology & Society, 12(1), 34-48.
Tyler Duvall, E. H., Jared Katseff, Ben Safran, and Tyler Wallace,. (2019). A new look at autonomous-vehicle infrastructure. Retrieved from
United Nations. (2017). World Population Prospects:the 2017 Revision.
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. doi:10.2307/30036540
Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365. doi:10.1287/isre.11.4.342.11872
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. doi:10.1287/mnsc.46.2.186.11926
Wardman, M. (1988). A comparison of revealed preference and stated preference models of travel behaviour. Journal of transport economics and policy, 71-91.
Yadav, R., Sharma, S. K., & Tarhini, A. (2016). A multi-analytical approach to understand and predict the mobile commerce adoption. Journal of enterprise information management.
Zhang, L., & Leung, J. P. (2002). Moderating effects of gender and age on the relationship between self‐esteem and life satisfaction in mainland Chinese. International Journal of Psychology, 37(2), 83-91.
Ziefle, M., & Röcker, C. (2010). Acceptance of pervasive healthcare systems: A comparison of different implementation concepts. Paper presented at the 2010 4th International Conference on Pervasive Computing Technologies for Healthcare.
中華民國國家發展委員會. (2018). 中華民國人口推估.
吳怡諄. (2013). 評估資通訊科技採用於高齡者旅運行為之影響-以台南為例. 成功大學交通管理科學系學位論文, 1-153.
李奇. (1992). 敘述性偏好模式與顯示性偏好模式比較之研究. 國立成功大學,
鄭永祥. (1994). 機車使用者轉乘大眾捷運系統個體選擇行為之研究. 國立交通大學,
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw