進階搜尋


下載電子全文  
系統識別號 U0026-2407202016474300
論文名稱(中文) 雙穩態手指按壓驅動壓電獵能器之設計、動態分析及發電功率量測
論文名稱(英文) Design, Dynamic Analysis and Power Measurement of a Bistable Piezoelectric Energy Harvester Driven by Finger Pressing
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 王柏凱
研究生(英文) Bo-Kai Wang
電子信箱 kkes40418@gmail.com
學號 N16074491
學位類別 碩士
語文別 中文
論文頁數 117頁
口試委員 指導教授-陳重德
口試委員-陳國聲
口試委員-屈子正
中文關鍵字 壓電獵能器  振動  升頻轉換  壓電耦合效應  功率量測  人體運動獵能 
英文關鍵字 piezoelectric energy harvester (PEH)  vibration  frequency-up conversion  piezoelectric coupling effect  power measurement  energy harvesting from human motion 
學科別分類
中文摘要 本研究提出一個基於升頻轉換概念之雙穩態手指按壓驅動壓電獵能器之設計、分析、製作及量測。本研究所提出的獵能器中包含一個雙層壓電樑、兩個滑塊、六個彈簧、按鈕、卡榫以及外殼,其機構設計形成雙穩態位能場,亦即在兩個位能井(potential well)中有一能障(potential barrier),壓電樑原靜止於其中一個位能井,透過手指按壓按鈕帶動壓電樑運動,克服能障抵達另一位能井,使壓電樑加速撞擊獵能器外殼,產生暫態振動,並透過壓電效應轉換成電能。由於雙穩態位能場之分佈與滑塊角度有直接關聯,因此本研究特別探討滑塊角度對獵能的影響。在分析方面,首先透過實驗與有限元素軟體ANSYS之比對確認壓電耦合係數d31值,接著建立ANSYS暫態分析模型,評估獵能器的動態行為及發電量。
在原型機構製作與量測方面,除了壓電樑以及彈簧之外,其餘零件皆以3D列印製作。根據滑塊角度不同之設計,本研究共製作15°、22.5°、30°以及37.5°等四個獵能器原型。量測時獵能器接上電阻,按壓驅動的同時,以示波器紀錄電阻之跨壓,並計算其功率。量測結果顯示,在30kΩ之電阻下,15°、22.5°以及30°之獵能器原型其最大功率分別為1.8 mW、5.3 mW 以及8.7 mW。與有限元素分析驗證結果除了滑塊角度15°時因功率較小而有些許誤差之外,22.5°以及30°之誤差分別為1.89%以及0.33%,顯示本研究所建立之有限元素模型能夠正確評估獵能器的發電功率。
最後將獵能器接上全波整流電路,透過十次手指按壓驅動獵能器,並將過程中產生的電荷儲存於電容中然後一次釋放,產生的電流可以成功的點亮LED燈,其瞬時功率達到1.35 mW。
英文摘要 Based on frequency up-conversion, this study presents the design, dynamic analysis, fabrications and measurements of a bistable piezoelectric energy harvester (PEH) driven by finger pressing. The energy harvester is composed of a bimorph piezoelectric beam, two sliders, six springs, a push button and the housing. The design forms a bistable potential field, including two potential wells and a potential barrier. The piezoelectric beam, initially rested at one potential well, moves in responding to the button press by finger, overcomes the potential barrier, accelerates to another potential well, and then collides the housing at high velocity. A transient vibration is excited due to the collision and then converted into electrical energy by piezoelectric effect. The bistable potential field depends on the slider angles, which is the key factor to be discussed in this study. For the dynamic analysis, the piezoelectric coupling coefficient d31 was corrected based on experiment. The finite element software ANSYS was used to establish a transient dynamic model to evaluate the dynamic behavior and harvested power of the PEH.
For the prototype fabrication and measurement, most parts were made by 3D printing except the piezoelectric beam and springs. By considering issues of slider angle, four prototypes were assembled with various slider angles of 15°, 22.5°, 30°and 37.5°. As the finger pressed the button, the voltage across a resistor connected with the PEH was generated and monitored by an oscilloscope. By knowing the resistance and the voltage, the generated power was calculated. The measurements results showed that, for both low resistance and high resistance, the PEH can not deliver high power. The maximum power occurs at an optimum resistance of 30 kΩ. This optimum resistance is independent of the slider angle. For slider angle being
15°, 22.5° and 30°, the maximum powers generated by the PEH were measured to be 1.8 mW、5.3 mW and 8.7 mW, respectively, under the optimum resistance. For the case of the slider with the angle of 37.5°, the PEH failed to complete the pressing due to the limitation of the spring compressed displacement. The power measurements data were compared with numerical simulation by the finite element model. Except for the case of slider with the angle of 15° showing some error due to the low power level, the comparisons resulted in small errors of 1.89% and 0.33 % for the cases of 22.5° and 30°, respectively. It concluded that the finite element model developed by this study can predict the PEH power in a high accuracy.
In the final part of this study, a full-wave rectifier was connected to the PEH to store the charges in a capacitance through ten successive presses. The charges were released to form a current to light a LED. During the discharging, the instantaneous power was measured to be 1.35 mW.
論文目次 目錄
摘要 I
Abstract III
致謝 XIII
目錄 XIV
表目錄 XVII
圖目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
第二章 壓電效應、暫態動力學與基本電路概述 7
2.1 壓電效應概述 7
2.2壓電耦合分析 12
2.3 暫態動力學分析簡介 15
2.4基本電路簡介 18
2.4.1 RC濾波電路 18
2.4.2 全波整流電路 23
第三章 壓電獵能器之設計、製作與實驗架設 25
3.1 雙穩態機構原理 25
3.2 獵能器設計 26
3.3 原型機構實作與加工 32
3.4 實驗架設 38
3.4.1壓電耦合係數校正實驗 38
3.4.2 PLA密度校正 40
3.4.3 電壓與功率量測 41
4.1 本章介紹 43
4.2 有限元素模型建立 43
4.3 元素與材料 49
4.4 材料常數與實常數設定 56
4.4.1 材料常數設定 56
4.4.2 阻尼常數設定 59
4.5 獵能器之簡化模型模態分析 65
4.6 獵能器有限元素模型之暫態分析 66
第五章 實驗、分析結果與討論 77
5.1 本章介紹 77
5.2 壓電耦合係數d31校正之實驗與模擬結果 77
5.3 收斂性分析 80
5.4 模態分析 84
5.5 滑塊角度參數對於獵能之影響 86
5.6 電壓響應之量測與模擬比較 87
5.6.1 滑塊角度22.5°之電壓響應量測、驗證與討論 87
5.6.2 滑塊角度30°之電壓響應量測、驗證與討論 92
5.6.3 滑塊角度15∘之電壓響應量測、驗證與討論 94
5.7 最佳阻抗及機構設計優化與討論 97
5.7.1 滑塊角度22.5°功率量測 97
5.7.2 滑塊角度30°功率量測 100
5.7.3 滑塊角度15°功率量測 103
5.7.4 不同滑塊角度參數之功率比較 107
5.8 獵能器驅動LED實驗結果 109
第六章 結論與未來展望 112
6.1 結論 112
6.2 未來展望 114
參考文獻 115

參考文獻 參考文獻
[1] “Enocean.” https://www.enocean.com/en/ (accessed June 21, 2020)
[2] S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications,” Measurement Science and Technology, Vol. 17, pp. R175–95, 2006.
[3] P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators A: Physical, Vol. 110, No. 1-3, pp. 344-349, 2004.
[4] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, pp. 64-76, 2001.
[5] G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, C. Pan, Y. Zhou and Y. Zhou, “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator,” Nano letters, Vol. 13, No. 2, pp. 847-853, 2013.
[6] S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart materials and Structures, Vol. 16, No. 3, pp. R1-R21, 2007.
[7] A. Erturk and D. J. Inman, “Piezoelectric energy harvesting,” John Wiley & Sons, New York, 2011.
[8] H. S. Kim, J. H. Kim and J. Kim, “A Review of Piezoelectric Energy Harvesting Based on Vibration,” International Journal of Precision Engineering and Manufactrueing, Vol. 12, No. 6, pp. 1129-1141, 2011
[9] S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Materials and structures, Vol. 13, No. 5, pp. 1131-1142, 2004.
[10] Z. Yang, S. Zhou, J. Zu, and D. Inman, “High-Performance Piezoelectric Energy Harvesters and Their Applications,” Joule, Vol. 2, pp. 642–697, 2018
[11] S. Roundy and Y. Zhang, “Toward self-tuning adaptive vibration based micro-generators,” Proceeding SPIE Smart Structures, Devices, and Systems II, Sydney, 2005.
[12] I. Sari, T. Balkan, and H. Kulah, “A wideband electromagnetic micro power generator for wireless microsystems,” TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, 2007: IEEE, pp. 275-278, 2007


[13] A. Erturk and D. J. Inman, “Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling,” Journal of Sound and Vibration, Vol. 330, No. 10, pp. 2339-2353, 2011.
[14] H. Wang, L. Tang, “Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling,” Mechanical Systems and Signal Processing, Vol. 86, pp. 29-39, 2017.
[15] B.P. Mann and N.D.Sims, “Energy harvesting from the nonlinear oscillations of magnetic levitation,” Journal of Sound and Vibration, Vol. 319, pp. 515-530, 2009.
[16] H. Liu, C. Lee, T. Kobayashi and C . Quan, “Investigation of a MEMS piezoelectric energy harvester system with a frequency-widenedbandwidth mechanism introduced by mechanical stoppers,” Smart Materials and Structures, Vol. 21, 035005(12pp), 2012.
[17] S . Liu, Q . Cheng, D . Zhao, L . F . Harbin, “Theoretical modeling and analysis of two-degree-of-freedompiezoelectric energy harvester with stopper,” Sensors and Actuators A, Vol. 245, pp. 97-105, 2016.
[18] Ö . Zorlu, E . T . Topal and H . Külah, “A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method ,” IEEE SENSORS, Vol. 11, No. 2, 2011.
[19] Q . C . Tang , Y . L . Yang and X . X . Li , “Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion,” Smart Materials and Structures, Vol. 20, 125011 (6pp) , 2011.
[20] P . Pillatsch, E . M. Yeatman and A . S .Holmes , “A piezoelectric frequency up-converting energy harvester withrotating proof mass for human body applications,” Sensors and Actuators A , Vol. 206, pp. 178-185, 2014
[21] M. Umeda, K. Nakamura, and S. Ueha, “Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator,” Japanese Journal of Applied Physics, Vol. 35, pp. 3267–3273, 1996.
[22] M . Renaud1, P . Fiorini, R . v . Schaijk and C . V . Hoof, “Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator,” Smart Materials and Structures, Vol. 18, 035001(16pp), 2009.
[23] X. F. He, K. S. Teh, S. Y. Li, L. X. Dong, and S. L. Jiang, “Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass,” Sensors and Actuators A: Physical, Vol. 259, pp. 171-179 , 2017.
[24] L. Tang and Y. Yanga, “A nonlinear piezoelectric energy harvester with magnetic oscillator,” Applied Physics Letter , Vol. 101, 2012

[25] P. Pillatsch, E. Yeatman, and A. Holmes, “Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters,” Smart Materials and Structures, Vol. 23, No. 2, 025009(12pp), 2013.
[26] C. Wang, Q. Zhang and W. Wang, “Low-frequency wideband vibration energy harvesting by using frequencyup-conversion and quin-stable nonlinearity,” Journal of Soundand Vibration, Vol. 399, pp. 169-181, 2017
[27] 吳宇軒, “新型磁吸式壓電獵能器之設計、分析與實驗驗證,” 碩士論文, 國立成功大學, 2019.
[28] 陳冠維, “有限元素-解析解法-SPICE共模擬之機電耦合系統應用於高功率密度壓電獵能模組最佳化設計,” 博士論文, 國立成功大學, 2018.
[29] 李旻哲, “指壓式壓電獵能器之實做, 分析與量測,” 碩士論文, 國立成功大學, 2018.
[30] H . F . Tieesten, “ IEEE Standard on Piezoelectricity ,” section 2, IEEE Ultra sonics, Ferroelectrics and Frequencycontrol society, 1987
[31] ANSYS Mechanical APDL Theory Reference
[32] “efuda, Properties of Piezo Material Lead Zirconate Titanate (PZT-5H).” https://www.efunda.com/materials/piezo/material_data/matdata_output.cfm?Material_ID=PZT-5H, 2090626 (accessed June 26, 2019).
[33] 寰辰科技股有限公司,壓電粉末特性表KA。
[34] C. L. Yang, K. W. Chen and C. D. Chen, “Modal and Characterization of Press-Button Type piezoelectric Energy Harvester,” IEEE/ASME Transactions on Mechatronics. Vol. 24, No. 1, pp. 132-143, 2019.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw