進階搜尋


下載電子全文  
系統識別號 U0026-2407201916434500
論文名稱(中文) 噴嘴孔板設置網絡化凹槽衝擊噴柱陣列熱傳實驗研究
論文名稱(英文) An experimental heat transfer study of impinging jet arrays issued from nozzle plates with web-patterned grooves
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 沈鴻達
研究生(英文) Hong-Da Shen
學號 P16061025
學位類別 碩士
語文別 英文
論文頁數 146頁
口試委員 指導教授-張始偉
口試委員-吳鴻文
口試委員-吳佩學
中文關鍵字 衝擊噴陣列  小間距  凹槽噴嘴孔板 
英文關鍵字 Impingement Jet Array  Small Separation Distance  Grooved Nozzle Plate 
學科別分類
中文摘要 本實驗研究探討於噴嘴陣列孔板設置凹槽對其熱傳性能之影響。實驗採用穩態紅外線熱傳檢測技術,量測自平滑及設置兩種網絡凹槽噴嘴陣列孔板之衝擊噴柱陣列熱傳性能。對自平滑或設置凹槽噴嘴陣列孔板射出之衝擊噴柱陣列,其實驗檢測之噴柱雷諾數(Rej)範圍為1500< Rej <20000,噴嘴出口與衝擊面分離距(S)則介於0.1至8倍之噴嘴直徑(dj)。研究結果顯示,當S/dj<0.3,由於噴嘴陣列孔板與衝擊面距離過近,致使對衝擊後之流體產生侷限效應(confinement effect),導致自平滑噴嘴陣列孔板射出之衝擊噴柱陣列熱傳性能,隨S/dj自0.3減少至0.1時出現熱傳係數降低之現象。藉由於噴嘴孔板上刻劃網絡式凹槽,鬆弛侷限效應,並導引衝擊後流體沿幅向流出噴嘴孔板與衝擊面之空間,顯著提升S/dj<0.3時之熱傳性能,且當隨S/dj自0.3減少至0.1時,其熱傳係數持續上升。另外由於噴嘴孔板上凹槽網絡能有效緩和噴柱間之相互干涉,因此於噴嘴孔板上刻劃網絡式凹槽,亦能於較小之S/dj條件,改善其噴柱衝擊面之熱傳分布均勻性。應用本實驗研究產生之熱傳數據庫,以統計回歸方法,推導出三組熱傳係數實驗公式,分別計算自平滑噴嘴陣列孔板,及兩組網絡凹槽噴嘴陣列孔板射出之噴柱陣列,其衝擊面中央區域之平均紐塞數。
英文摘要 The present experimental study explores the heat transfer impacts caused by the grooves on the nozzle plate of the impinging jet arrays. The heat transfer performances for the impinging jet arrays issued from the smooth and the grooved nozzle plates are detected using the steady state infrared thermography method. With both the smooth and grooved nozzle plates through which the impinging jet arrays are issued, the jet Reynolds numbers (Rej) are in the range of 1500< Rej <20000 and the nozzle-to-plate separation distances (S) fall between 0.1 and 8 jet diameters (dj). With S/dj<0.3, the research results show that the heat transfer performances are undermined by the strong confinement effects due to the small separation distances when the impinging jet array is emitted from the smooth nozzle plate, leading to the decreased heat transfer rates as S/dj reduces from 0.3 to 0.1. By way of relaxation of the spent flow confinement between the nozzle plate and the impinging surface using the patterned grooves via which the spent fluids flow radially outward, the heat transfer performances at S/dj<0.3 are considerably improved with the heat transfer rates keep increasing as S/dj reduces from 0.3 to 0.1. In addition, as the grooves on the nozzle plate effectively moderate the jet-to-jet interferences, the heat transfer uniformity at small S/dj over the impinging surface can be improved. Based on the heat transfer data generated by the present study, three set of heat transfer correlations are generated to evaluate the average Nusselt number over the central jet region of the impinging jet arrays issued from the smooth nozzle plate and the nozzle plates with two different groove patterns.
論文目次 摘要 II
Abstract III
Acknowledgements IV
Table of Contents VI
List of Tables VIII
List of Figures IX
Nomenclature XI
Chapter 1. Introduction 1
1.1. Introduction to impinging jet 1
1.2. Background of industrial application 4
1.3. Research goals 8
Chapter 2. Literature review 10
2.1. Single impinging jet 10
2.2. Multi-jet impingement 19
Chapter 3. Experimental methods 34
3.1. Experimental facilities 34
3.2. Data Reduction methods 40
3.3. Experimental uncertainties 46
Chapter 4. Results and discussion 54
4.1. Spent flow conditions 54
4.2. Heat transfer characteristics 56
4.3. Heat transfer uniformities 72
4.4. Averaged heat transfer performance 74
4.5. Heat transfer correlation 80
Chapter 5. Conclusions and recommendations 84
References 86
Appendix 93
參考文獻 [1] The Technology Foundation(STW),TNO-TPD, and Rademaker-Den Boer BV.,Multiple Impinging Jet Arrays: An Experimental Study on Flow and Heat Transfer,pp.14~20,ISBN 90 901 7774 4
[2] M.J. Remie, G. Sa¨rner, M.F.G. Cremers, A. Omrane, K.R.A.M. Schreel, L.E.M. Alde´n, L.P.H. de Goey, “Heat-transfer distribution for an impinging laminar flame jet to a flat plate”, International Journal of Heat and Mass Transfer, vol. 51, pp. 3144–3152, 2008.
[3] H. Leocadio, Julio Cesar Passos, Antonio Fabio C. da Silva, “Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet”, 7th ECI International Conference on Boiling Heat Transfer, Florianópolis, SC, Brazil, pp. 3-7, 2009.
[4] M. Korger,F. Krizek, “Mass-transfer coefficient in impinging flow from slotted nozzles”, Int. J. Heat Mass Transfer, vol. 9, pp. 337–344, 1966.
[5] V. Hindasageri, R.P. Vedula, S.V. Prabhu, “Heat transfer distribution for impinging methane-air premixed flame jets”, Applied Thermal Engineering, vol. 73, pp. 461–473, 2014.
[6] P. Xu, A.P. Sasmito, S. Qiu, A.S. Mujumdar, L. Xu, L. Geng, “Heat transfer and entropy generation in air jet impingement on a model rough surface”, International Communications in Heat and Mass Transfer, vol. 72, pp. 48–56, 2016.
[7] R. Vinze, S. Chandel, M.D. Limaye, S.V. Prabhu, “Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets”, International Journal of Thermal Sciences, vol. 99, pp. 136–151, 2016.
[8] R. Vinze, S. Chandel, M.D. Limaye, S.V. Prabhu, “Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle”, Experimental Thermal and Fluid Science vol. 78, pp. 124–136, 2016.
[9] G. Cafiero, G. Castrillo, C. S. Greco, T. Astarita, “Effect of the grid geometry on the convective heat transfer of impinging jets”, International Journal of Heat and Mass Transfer, vol. 104, pp. 39–50, 2017.
[10] P. Muvvala, C. Balaji, S.P. Venkateshan, “Experimental investigation on the effect of wire mesh at the nozzle exit on heat transfer from impinging square jets”, Experimental Thermal and Fluid Science, vol. 84, pp. 78–89, 2017.
[11] X.T. Trinh, M. Fénot, E. Dorignac, “Flow and heat transfer of hot impinging jets issuing from lobed nozzles”, International Journal of Heat and Fluid Flow, vol. 67, pp. 185-201, 2017.
[12] R. Viskanta, “Heat transfer to impinging isothermal gas and flame jets”, Experimental Thermal and Fluid Science, vol. 6, pp. 111–134, 1993.
[13] A. Ianiro and G. Cardone, “Heat transfer rate and uniformity in multichannel swirling impinging jets”, Applied Thermal Engineering, vol. 49, pp. 89–98, 2012.
[14] C. Nuntadusit, M. Wae-hayee, A. Bunyajitradulya, S. Eiamsa-ard, “Visualization of flow and heat transfer characteristics for swirling impinging jet”, International Communications in Heat and Mass Transfer, vol. 39, pp. 640–648, 2012.
[15] K. Nanan, P. Eiamsa‐ard, “Heat transfer of swirling jet impinging on a flat surface with swirl generators”, Transactions of the TSME: JRAME, vol.2(2), pp. 103-110, 2014.
[16] S. Eiamsa-ard, K. Nanan, K. Wongcharee, “Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method”, International Journal of Heat and Mass Transfer, vol. 86, pp. 600–621, 2015.
[17] Y. Amini, M. Mokhtari, M. Haghshenasfard, M. B. Gerdroodbary, “Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique”, Case Studies in Thermal Engineering, vol. 6, pp. 104–115, 2015.
[18] Z. U. Ahmed, Y. M. Al-Abdeli, F. G. Guzzomi, “Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets”, International Journal of Thermal Sciences, vol. 114, pp. 241–256, 2017.
[19] K. Wongcharee, V. Chuwattanakul, S. Eiamsa-ard, “Influence of CuO/water nanofluid concentration and swirling flow on jetimpingement cooling”, International Communications in Heat and Mass Transfer, vol. 88, pp. 277-283, 2017.
[20] L. Xu, J. Lan, Y. Ma, J. Gao, Y. Li, “Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle”, International Journal of Heat and Mass Transfer, vol. 115, pp. 232–237, 2017.
[21] R. N. Koopman, E. M. Sparrow, “Local and average transfer coefficients due to an impinging row of jets”, Int. Journal of Heat and Mass Transfer, vol. 19, pp. 673–683, 1976.
[22] M. Attalla, H. M. Maghrabie, E. Specht, “Effect of inclination angle of a pair of air jets on heat transfer into the flat surface”, Experimental Thermal and Fluid Science, vol. 85, pp. 85–94, 2017.
[23] V. S. Patila, R. P. Vedula, “Local heat transfer for jet impingement onto a concave surface including injection nozzle length to diameter and curvature ratio effects”, Experimental Thermal and Fluid Science, vol. 92, pp. 375–389, 2018.
[24] U. Uysal, P.-W. Li, M. K. Chyu, F. J. Cunha, “Heat transfer on internal surfaces of a duct subjected to impingement of a jet array with varying jet hole-size and spacing”, ASME Journal of Turbomachinery, vol. 128, pp. 158–165, 2006.
[25] B. Yang, S. Chang, H. Wu, Y. Zhao, M. Leng, “Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface”, Applied Thermal Engineering, vol. 127, pp. 473–483, 2017.
[26] M. Attalla, H.M. Maghrabie, A. Qayyum, A.G. Al-Hasnawi, E. Specht, “Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets”, Applied Thermal Engineering, vol. 120, pp. 160–169, 2017.


[27] L. W. Florschuetz, C. R. Truman, D. E. Metzger, “Streamwise flow and heat transfer distributions for jet array impingement with crossflow, J. heat transfer, vol. 103(2), pp. 337-342, 1981.
[28] A. I. Behbahani, R. J. Goldstein, “Local heat transfer to staggered arrays of impinging circular air jets”, ASME J. Eng. Power, vol. 105, pp. 354–360, 1983.
[29] A. Huber, R. Viskantay, “Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets”, International Journal Heat and Mass Transfer, vol. 37, pp. 2859–2869, 1994.
[30] S. V. Garimella, V. P. Schroeder, “Local heat transfer distributions in confined multiple air jet impingement”, ASME Journal of Electronic Packaging, vol. 123, pp. 165–172, 2001.
[31] L.M. Su, S.W. Chang, “Detailed heat transfer measurements of impinging jet arrays issued from grooved surfaces”, International Journal of Thermal Sciences, vol. 41, pp. 823–841, 2002.
[32] S.V. Ekkad, D. Kontrovitz, “Jet impingement heat transfer on dimpled target surfaces”, International Journal of Heat and Fluid Flow, vol. 23, pp. 22–28, 2002.
[33] B.P.E. Dano, J.A. Liburdy, K. Kanokjaruvijit, “Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry”, International Journal of Heat and Mass Transfer, vol. 48, pp. 691–701, 2005.
[34] Y. Yamane, Y. Ichikawa, M. Yamamoto, S. Honami, “Effect of injection parameters on jet array impingement heat transfer”, International Journal of Gas Turbine, Propulsion and Power Systems, vol. 4(1), pp. 27-34, 2012.
[35] J.Y. San , J.J. Chen, “Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array”, International Journal of Heat and Mass Transfer, vol. 71, pp. 8-17, 2014.
[36] J. Lee, Z. Ren, J. Haegele, G. Potts, J. S. Jin, P. Ligrani, M. D. Fox, H.-K. Moon, “Effects of jet-to-target plate distance and Reynolds number on jet array impingement heat transfer”, ASME Journal of Turbomachinery, vol. 136, pp. 051013 1–13, 2014.
[37] Y. Shan, J. Zhang, G. Xie, “Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel”, International Journal of Heat and Mass Transfer, vol. 86, pp. 832–842, 2015.
[38] J. Lee, Z. Ren, P. Ligrani, M. D. Fox, H.-K. Moon, “Crossflows from jet array impingement cooling: hole spacing, target plate distance, Reynolds number effects”, International Journal of Thermal Sciences, vol. 88, pp. 7–18, 2015.
[39] P.M. Ligrani, Z. Ren, W.C. Buzzard, “Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays”, International Journal of Heat and Mass Transfer, vol. 107, pp. 895–905, 2017.
[40] W.C. Buzzard, Z. Ren, Phillip M. Ligrani, C. Nakamata, S. Ueguchi, “Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer”, International Journal of Heat and Mass Transfer, vol. 110, pp. 805–816, 2017.
[41] C. Nuntadusit, M. Wae-hayee, A. Bunyajitradulya, S. Eiamsa-ard, “Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators”, International Communications in Heat and Mass Transfer, vol. 39, pp. 102–107, 2012.
[42] M. Wannassi, F. Monnoyer, “Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays”, Applied Thermal Engineering, vol. 78, pp. 62–73, 2015.
[43] R. Viskanta, “Heat transfer to impinging isothermal gas and flame jets.”, Experimental Thermal and Fluid Science, vol. 6, pp. 111–134, 1993.
[44] “Journal of heat transfer policy on reporting uncertainties in experimental measurements and results”, Journal of Heat Transfer, Vol. 115/5, 1993
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw