進階搜尋


 
系統識別號 U0026-2407201915112900
論文名稱(中文) 高層大氣短暫發光現象的定位及電離層底部附近的大氣耦合
論文名稱(英文) Triangulation of TLEs and Atmospheric Couplings near the Lower Ionospheric Boundary
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 彭康銘
研究生(英文) Kang-Ming Peng
電子信箱 albert_peng@pchome.com.tw
學號 L28011025
學位類別 博士
語文別 英文
論文頁數 104頁
口試委員 指導教授-許瑞榮
召集委員-蘇漢宗
口試委員-陳炳志
口試委員-朱延祥
口試委員-郭政靈
口試委員-張偉裕
中文關鍵字 高層大氣短暫發光事件  定位  紅色精靈  巨大噴流 
英文關鍵字 Transient luminous events  Triangulation  Sprite  Gigantic jet 
學科別分類
中文摘要 高層大氣短暫發光事件(Transient luminous events; TLEs)為雷雨雲系統至電離層底部間發生的放電現象。成大團隊自2011年開始展開了TLE的聯合觀測,以進行高層大氣發光現象精細結構的定位,以及檢驗福衛二號太空酬載高空大氣閃電影像儀(Imager of Sprites and Upper Atmospheric Lightning; ISUAL)觀測到的TLE的定位誤差和偵測率。目前此一聯合觀測系統包含四個地面站,其觀測基線約為100 至 400 公里間。此一系統截至目前為止已經觀測到許多的高層大氣短暫發光事件,此研究將主要著重於2013年8月9日發生於福建的37個紅色精靈以及2014年8月20日於台灣東北外海的11個巨大噴流現象。
於2013年8月9日的紅色精靈中,有17個可以被精確的定位,其結果顯示其發生於福建山區的兩個午後對流系統。其中4個群聚發生的柱狀紅色精靈經過定位發現其空間分布為近似圓形分布、平行分布及扇形分布,並展示了柱狀紅色精靈空間分布的多樣性。其底部以及頂部的平均高度為72.4 ± 2.4 公里和82.3 ± 1.8 公里,且其柱狀的寬度約小於0.5 公里。此群紅色精靈中有一個事件是首次同時被ISUAL以及地面觀測到,因此可以用於檢驗ISUAL定位的精度以及偵測靈敏度。結果顯示ISUAL事件的定位誤差小於7公里
而在2014年8月20日的觀測資料中, 11個發生於台灣東北外海的巨大噴流中有8個為多站聯合觀測,其定位結果顯示他們多發生於活躍積雨雲系統的對流層過衝雲頂附近。巨大噴流的截止高度經過定位發現,8個可以定位的巨大噴流中,有7個截止於約 80至90 公里高。僅有一個巨大噴流截止高度高於100公里且其頂端為約10公里厚的擴散層。這群事件中,有三組巨大噴流是接連發生的,其發生的位置相當接近且時間間隔僅為約0.5至100 秒;後發生的事件通常比較明亮且具有更多的串珠狀結構。其中一個與先導巨大噴流相隔100秒後發生的巨大噴流甚至在55至70 公里高度間,形成三條重複發光的流束。這些在後續產生的巨大噴流中重複發光的流束、亮度增加的串珠以及數量的增加,暗示了前導巨大噴流在中氣層所產生的電漿可能殘留長達100秒。除此之外,若定義巨大噴流在發展完整的噴流階段由噴流狀(導流)改變為扇形(流束區)的高度為流束至導流的過渡高度,則此一過渡高度約為40 公里。與此同時,對於巨大噴流的彩色照片的分析指出此一過渡過程在40公里以下為藍色然後在此高度以上逐漸轉換為紅色。
英文摘要 Transient luminous events (TLEs) are electrical-discharges occurring in the region between a thundercloud and the lower ionosphere. The NCKU team carried out coordinated ground TLE optical observations in Taiwan since 2011, with the aims to triangulate the fine structure of the TLEs, to examine the geolocation uncertainty of TLEs, and to confirm the TLE detection efficiency of ISUAL (Imager of Sprites and Upper Atmospheric Lightning) – a set of instruments onboard the FORMOSAT-2 satellite dedicating to study TLEs from space.
Currently, the Taiwan TLE observation network contains four stations with baselines of 100 to 400 km; the stations had simultaneously recorded many TLEs and a few selected events are analyzed in this work. Here we will focus on the 37 sprites occurred on August 9, 2013, over Fujian, China, and the eleven gigantic jets (GJs) appeared on August 20, 2014, over the northeastern offshore region of Taiwan.
Seventeen of the sprites recorded on August 9, 2013, are triangulated, and the result shows they occurred over two convective cells in the mountainous area of Fujian. The luminous elements of four clustering columniform sprites are also triangulated, which shows a very diversifying distribution pattern. The distribution of the luminous elements in the clustering columniform sprites can be near circular, parallel or fan-shaped. The mean lower and upper altitudes of the luminous elements are 72.4 ± 2.4 km and 82.3 ± 1.8 km, respectively. While the estimated column width is less than 0.5 km. One of the sprites was simultaneously observed by the ground station and the ISUAL. This is the first known coordinated observed TLE by space and ground instruments, the geolocation uncertainty of the ISUAL is found to be less than 7 km.
On the night of August 20, 2014, 8 of the 11 GJs occurring over Taiwan northeastern offshore region were observed by the Taiwan TLE network. The triangulation reveals that these GJs occurred near the troposphere overshooting tops of a vigorous cumulonimbus cloud. Among the 8 triangulated GJs, 7 GJs terminated at 80 – 90 km altitudes (near the nighttime lower ionosphere boundary). However, a GJ with a 10 km thick diffuse region on the top extended higher than 100 km altitude. Three sets of these triangulated GJs occurred successively in a period of 0.5 to 100 seconds. The follow-up GJs, in general, tend to be brighter and contain more bead structures. One of the follow-on GJ (occurred 100 seconds after the preceding GJ) contained three re-brightened streamer columns at 55 – 70 km altitudes. Re-brightened streamers and more numerous brighter beads in the subsequent GJs imply the GJs can produce long-lasting plasma patches in the mesosphere. In addition, the morphology of these GJs changes from jet-like (leader) to fan-like (streamer zone) at the leader-to-streamer transition altitude around ~40 km. At the meantime, analysis of the GJ color images indicates the dominant emissions below ~40 km is bluish and red above ~40 km.
論文目次 Chapter 1 Introduction 1
1.1 Overview of Transient Luminous Events 2
1.1.1 Sprite 2
1.1.2 Halo 5
1.1.3 Elves 5
1.1.4 Blue Jet 6
1.1.5 Gigantic Jet 7
1.2 Optical Triangulation of TLEs 9
1.3 Motivation 12
Chapter 2 Instrumentation 14
2.1 TLE Ground Observation System 14
2.2 The NCKU Sferic Signal Recording System 15
2.3 Weather Radar 16
2.4 Imager of Sprites and Upper Atmospheric Lightning (ISUAL) 18
Chapter 3 Triangulation Methodology 21
3.1 Triangulation Formulae 21
3.2 Triangulation Procedures 27
Chapter 4 Sprite Triangulation 31
4.1 The Sprite Producing Convection System on August 9, 2013 31
4.2 The Geolocation and Height of the Sprites on August 9, 2013 33
4.3 The Pattern of the Group of Column Sprites 36
4.4 The ISUAL TLE Geolocation Accuracy and Detection Efficiency 41
Chapter 5 Triangulation of Gigantic Jet 51
5.1 General Properties of the GJs on August 20, 2014 52
5.2 The Occurrence of GJs and Tropospheric Activities 55
5.3 The Propagation Velocity and Streamer to Leader Transition of GJs 58
5.4 Streamers and Beads in Successively Occurring GJ Events 62
5.5 The Terminal Altitude of GJs 67
5.6 The Overshooting GJ Event 69
5.7 The Optical Emission of GJ 77
Chapter 6 Conclusion 84
6.1 Sprite Triangulation 85
6.2 The Triangulation of Gigantic Jets 87
6.3 The Coupling from the Near-Earth Region to the Ionosphere 89
Chapter 7 Future Work 91
Reference 95
參考文獻 Bazelyan, E. M., & Raizer, Y. P. (2000), Lightning Physics and Lightning Protection. Institute of Physics Publishing, Bristol, Philadelphia
Boeck, W. L., Vaughan Jr., O. H., Blakeslee, R. J., Vonnegut, B., & Brook, M. (1998), The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J. Atmos. Sol. Terr. Phys., 60, 669–677, doi:10.1016/S1364-6826(98)00025-X
Barrington‐Leigh, C. P., Inan, U. S., & Stanley, M. (2001), Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. Space Physics, 106(A2), 1741-1750, https://doi.org/10.1029/2000ja000073
Chang, P. L., Lin, P. F., Jou J.-D., B., & Zhang, J. (2009). An application of reflectivity climatology in constructing radar hybrid scans over complex terrain. Journal of Atmospheric and Oceanic Technology, 26(7), 1315-1327. https://doi.org/10.1175/2009jtecha1162.1
Chang, S. C., Kuo, C. L., Lee, L. J., Chen, A. B., Su, H. T., Hsu, R. R., Frey, H. U., Mende, S. B., Takahashi, Y., &Lee, L. C. (2010), ISUAL far‐ultraviolet events, elves, and lightning current. J. Geophys. Res., 115, A00E46, doi:10.1029/2009JA014861.
Chapin, E., & Kudeki, E. (1994). Radar interferometric imaging studies of long‐duration meteor echoes observed at Jicamarca. J. Geophys. Res.: Space Physics, 99(A5), 8937-8949.
Chen, A. B., Kuo, C., Hsu, R. R., Su, H. T., Huang, T., Lee, Y., ... & Frey, H. U. (2005). Gloabl Distribution and Seasonal Distribution Variaion of Transient Luminous Events AGU, Fall Meet. Suppl..
Chen, A. B., Kuo, C. L., Lee, Y. J., Su, H. T., Hsu, R. R., Chern, J. L., Frey, H. U., Mende, S. B., Takahashi, Y., Fukunishi, H., Chang, Y. S., Liu, T. Y., & Lee, L. C. (2008). Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/ 2008JA013101.
Chern, J. L., Hsu, R. R., Su, H. T., Mende, S. B., Fukunishi, H., Takahashi, Y., & Lee, L. C. (2003). Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. J. Atmos. Solar Terr. Phys., 65(5), 647–659, doi:10.1016/S1364-6826(02)00317-6.
Chu, Y. H., Su, C. L., Larsen, M. F., & Chao, C. K. (2007). First measurements of neutral wind and turbulence in the mesosphere and lower thermosphere over Taiwan with a chemical release experiment. J. Geophys. Res.: Space Physics, 112(A2).
Chou, J. K., Kuo, C. L., Tsai, L. Y., Chen, A. B., Su, H. T., Hsu, R. R., et al. (2010). Gigantic jets with negative and positive polarity streamers, J. Geophys. Res., 115, A00E45, doi:10.1029/2009JA014831.
Chou, J. K., Hsu, R. R., Su, H. T., Chen, A. B. C., Kuo, C. L., Huang, S. M., et al. (2015). The Associated Sferics of the ISUAL Blue Luminous Events. AGU Fall Meeting Abstracts.
Cummer, S. A. (2003). Current moment in sprite-producing lightning. J. Atmos. Solar Terr. Phys. 65, 499-508, doi: 10.1016/S1364-6826(02)00318-8.
Cummer, S. A., Li, J., Han, F., Lu, G., Jaugey, N., Lyons, W. A., & Nelson, T. E. (2009). Quantification of the troposphere‐to‐ionosphere charge transfer in a gigantic jet, Nature Geosci., 2, 617–620, doi:10.1038/ngeo607.
Cummer, S. A., Lyons, W. A., & Stanley, M. A. (2013). Three years of lightning impulse charge moment change measurements in the United States, J. Geophys. Res. Atmos, 118, 5176–5189, doi:10.1002/jgrd.50442.
Deegan, R. D., Brunet, P., & Eggers, J. (2008). Complexities of splashing, Nonlinearity, 21, C1, doi: dx.doi.org/10.1088/0951-7715/21/1/C01
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., & Conde, M., et al. (2015). An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2, 301–319, Doi:10.1002/2014EA000089.
Edgerton, H. E. (1987). Stopping time: the photographs of Harold Edgerton. H.N. Abrams, 18 pp.
Franz, R. C., Nemzek, R. J., & Winckler, J. R. (1990). Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48-51, doi: 10.1126/science.249.4964.48.
Frey, H. U., Mende, S. B., Cummer, S. A., Li, J., Adachi, T., Fukunishi, H., ... & Chang, Y. S. (2007). Halos generated by negative cloud‐to‐ground lightning. Geophys. Res. Lett., 34(18). https://doi.org/10.1029/2007gl030908
Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U. S., & Lyons, W. A., 1996: Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157-2160, doi: 10.1029/96GL01979.
Gerken, E. A., Inan, U. S., & Barrington‐Leigh, C. P. (2000). Telescopic imaging of sprites. Geophys. Res. Lett., 27(17), 2637-2640. https://doi.org/10.1029/2000gl000035
Gerken, E. A., & Inan, U. S. (2002). A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J. Geophys. Res., 107(A11), 1344, doi:10.1029/2002JA009248.
Gordillo-Vázquez, F J (2008). Air plasma kinetics under the influence of sprites. J. Phys. D: Appl. Phys., 41 234016 (33pp), doi:10.1088/0022-3727/41/23/234016
Hayakawa, M., Nakamura, T., Hobara, Y., & Williams, E. (2004). Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter, J. Geophys. Res., 109, A01312, doi:10.1029/2003JA009905.
Hsu, R. R., Su, H. T., Chen, A. B., Lee, L. C., Asfur, M., Price, C., & Yair, Y. (2003). Transient luminous events in the vicinity of Taiwan, J. Atmos. Sol. Terr. Phys., 65, 561-566, doi: 10.1016/S1364-6826(02)00320-6.
Hsu, R. R., Chen ,A. B., Kuo, C. L., Su, H. T., Frey, H., Mende, S., Takahashi, Y., & Lee, L. C. (2009). On the global occurrence and impacts of transient luminous events (TLEs), AIP Conf. Proc., 1118(1), 99–107. https://doi.org/10.1063/1.3137720
Huang, S. M., Hsu, R. R., Lee, L. J., Su, H. T., Kuo, C. L., Wu, C. C., ... & Chen, A. B. (2012). Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010). J. Geophys. Res.: Space Physics, 117(A8). https://doi.org/10.1029/2012ja017600
Inan, U. S., Barrington‐Leigh, C., Hansen, S., Glukhov, V. S., Bell, T. F., & Rairden, R. (1997). Rapid lateral expansion of optical luminosity in lightning‐induced ionospheric flashes referred to as ‘elves. Geophys. Res. Lett., 24(5), 583-586. https://doi.org/10.1029/97gl00404
Jehl, A., Farges, T., & Blanc, E. (2013). Color pictures of sprites from nondedicated observation on board the International Space Station, J. Geophys. Res. Space Physics, 118, 454–461, doi:10.1029/2012JA018144.
Kasemir, H. W. (1960), A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65, 1873–1878, doi:10.1029/JZ065i007p01873.
Kells, L. M., Kern, W. F., & Bland, J. R. (1951), Plane and spherical trigonometry, McGraw-Hill, 183-203.
Kuo, C. L, Hsu, R. R., Chen, A. B., Su, H. T., Lee, L. C., Mende, S. B., Frey, H. U., Fukunishi, H., & Takahashi, Y. (2005). Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, 19103, DOI: 10.1029/2005GL023389.
Kuo, C. L., Chen, A. B., Lee, Y. J., Tsai, L. Y., Chou, R. K., Hsu, R. R., ... & Mende, S. B. (2007). Modeling elves observed by FORMOSAT‐2 satellite. J. Geophys. Res.: Space Physics, 112(A11). ttps://doi.org/10.1029/2007ja012407
Kuo, C. L., Chou, J. K., Tsai, L. Y., Chen, A. B., Su, H. T., Hsu, R. R., et al. (2009). Discharge processes, electric field, and electron energy in ISUAL‐recorded gigantic jets. J. Geophys. Res.: Space Physics, 114(A4). https://doi.org/10.1029/2008ja013791
Kuo C. L., Williams, E., Bor, J., Lin, Y. H., Lee, L. J., Huang, S. M., Chou, J. K., Chen, A. B., Su, H. T., Hsu, R. R., Satori, G., Frey, H. U., Mende, S. B., Takahashi, Y., & Lee, L. C. (2013). Ionization emissions associated with N2+ 1N band in halos without visible sprite streamers, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50470.
Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233. https://doi.org/10.1038/ngeo162
Lang, T. J., Miller, L. J., Weisman, M., Rutledge, S. A., Barker III, L. J., Bringi, V. N., ... & Knight, C. (2004). The severe thunderstorm electrification and precipitation study. Bulletin of the American Meteorological Society, 85(8), 1107-1126.
Lee, L. J., Chen, A. B., Chang, S. C., Kuo, C. L., Su, H. T., Hsu, R. R., Wu, C. C., Lin, P. H., Frey, H. U., Mende, S. B., Takahashi, Y., & Lee, L.-C. et al. (2010). Controlling synoptic-scale factors for the distribution of transient luminous events, J. Geophys. Res., 115, A00E54, doi:10.1029/2009JA014823.
Lee, L.-J., Huang, S.-M., Chou, J.-K., Kuo, C.-L., Chen, A. B., Su, H.-T., Hsu, R.-R., Frey, H. U., Takahashi, Y., & Lee, L.-C. (2012). Characteristics and generation of secondary jets and secondary gigantic jets, J. Geophys. Res., 117, A06317, doi:10.1029/2011JA017443
Li, J., Cummer, S., Lu, G., & Zigoneanu, L. (2012). Charge moment change and lightning‐driven electric fields associated with negative sprites and halos. J. Geophys. Res.: Space Physics, 117(A9). https://doi.org/10.1029/2012ja017731
Lu, G., Cummer, S. A., Lyons, W. A., Krehbiel, P. R., Li, J., Rison, W., et al. (2011). Lightning development associated with two negative gigantic jets. Geophys. Res. Lett., 38(12). https://doi.org/10.1029/2011gl047662
Lu, G., Cummer, S. A., Li, J., Zigoneanu, L., Lyons, W. A., Stanley, M. A., et al. (2013). Coordinated observations of sprites and in‐cloud lightning flash structure. J. Geophys. Res. Atmos., 118(12), 6607-6632. https://doi.org/10.1002/jgrd.50459
Luque, A., & Gordillo‐Vázquez, F. J. (2011). Sprite beads originating from inhomogeneities in the mesospheric electron density. Geophys. Res. Lett., 38 , L04808, doi:10.1029/2010GL046403.
Lyons, W. A. (1996). Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29641-29652, doi: 10.1029/96JD01866.
Marshall, R. A., & Inan, U. S. (2005). High-speed telescopic imaging of sprites, Geophys. Res. Lett., 32, L05804,doi:10.1029/2004GL021988.
Marshall, R. A., Inan, U. S., & Glukhov, V. S. (2010). Elves and associated electron density changes due to cloud‐to‐ground and in‐cloud lightning discharges. J. Geophys. Res.: Space Physics, 115(A4). https://doi.org/10.1029/2009ja014469
Mende, S. B., Frey, H. U., Hsu, R. R., Su, H. T., Chen, A. B., Lee, L. C., Sentman, D. D., Takahashi, Y., & Fukunishi, H. (2005). D region ionization by lightning-induced electromagnetic pulses, J. Geophys. Res., 110, A11312, doi:10.1029/2005JA011064.
Meyer, T. C., Lang, T. J., Rutledge, S. A., Lyons, W. A., Cummer, S. A., Lu, G., & Lindsey, D. T. (2013). Radar and lightning analyses of gigantic jet-producing storms. J. Geophys. Res. Atmos., 118, 2872–2888, doi:10.1002/jgrd.50302.
Milikh, G. M., Shneider, M. N., & Mokrov, M. S. (2014). Model of blue jet formation and propagation in the nonuniform atmosphere. J. Geophys. Res.: Space Physics, 119(7), 5821-5829. https://doi.org/10.1002/2014ja020123
Millman, P. M., & McKinley, D. W. R. (1956). Meteor echo durations and visual magnitudes. Canadian Journal of Physics, 34(1), 50-61.
Miyasato, R., Taylor, M. J., Fukunishi, H., & Stenbaek-Nielsen, H. C. (2002). Statistical Characteristics of Sprite Halo Events Using Coincident Photometric and Imaging Data, Geophys. Res. Lett., 29(21), 2033, doi:10.1029/2001GL014480.
Newsome, R. T., & Inan, U. S. (2010). Free‐running ground‐based photometric array imaging of transient luminous events. J. Geophys. Res.: Space Physics, 115(A7). https://doi.org/10.1029/2009ja014834
Pasko, V. P., Inan, U. S., Bell, T. F., & Taranenko, Y. N. (1997). Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res., 102(A3), 4529–4561, doi:10.1029/96JA03528.
Pasko, V. P., & George, J. J. (2002). Three-dimensional modeling of blue jets and blue starters. J. Geophys. Res.: Space Physics, 107(A12), 1458, doi:10.1029/2002JA009473.
Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S., & Wood, T. G. (2002). Electrical discharge from a thundercloud top to the lower ionosphere. Nature, 416, 152–154, doi:10.1038/416152a.
Pasko, V. P., & Stenbaek‐Nielsen, H. C. (2002). Diffuse and streamer regions of sprites. Geophys. Res. Lett., 29(10), DOI: 10.1029/2001GL014241.
Pasko, V. P. (2003). Electric jets, Nature, 423, pp. 927-929, https://doi.org/10.1038/423927a
Peng, K. M., Hsu, R. R., Su, H. T., Chen, A., Chou, J. K., Chang, S. C., ... & Tsai, S. H. (2017). Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign. Terrestrial, Atmospheric & Oceanic Sciences, 28(4).
Peng, K. M., Hsu, R. R., Chang, W. Y., Su, H. T., Chen, A. B. C., Chou, J. K., ... & Tsai, S. H. (2018). Triangulation and Coupling of Gigantic Jets Near the Lower Ionosphere Altitudes. J. Geophys. Res.: Space Physics, 123(8), 6904-6916.
Raizer, Y. P., Milikh, G. M., & Shneider, M. N. (2010). Streamer‐ and leader‐like processes in the upper atmosphere: Models High-speed telescopic imaging of sprites of red sprites and blue jets. J. Geophys. Res., 115, A00E42, doi:10.1029/2009JA014645.
Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., & Heavner, M. J., (1995). Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205–1208, doi:10.1029/ 95GL00583.
da Silva, C. L., & Pasko, V. P. (2013). Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets. J. Geophys. Res. Atmos., 118, doi:10.1002/2013JD020618.
Smith, D. A., Shao, X. M., Holden, D. N., Rhodes, C. T., Brook, M., Krehbiel, P. R., ... & Thomas, R. J. (1999). A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res. Atmos., 104(D4), 4189-4212. https://doi.org/10.1029/1998jd200045
Soula, S., van der Velde, O., Montanya, J., Huet, P., Barthe, C., & Bór, J. (2011). Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island, J. Geophys. Res., 116, D19103, doi:10.1029/2010JD015581.
Stenbaek-Nielsen, H. C., Moudry, D. R., Wescott, E. M., Sentman, D. D., & Sabbas, F. T. S. (2000). Sprites and possible mesospheric effects, Geophys. Res. Lett., 27, 3829–3832. doi:10.1029/2000GL003827
Stenbaek‐Nielsen, H. C., Haaland, R., McHarg, M. G., Hensley, B. A., & Kanmae, T. (2010). Sprite initiation altitude measured by triangulation, J. Geophys. Res., 115, A00E12, doi:10.1029/2009JA014543.
Su, H. T., Hsu, R. R., Chen, A. B. C., Lee, Y. J., & Lee, L. C. (2002). Observation of sprites over the Asian continent and over oceans around Taiwan, Geophys. Res. Lett., 29, 3-1, doi: 10.1029/2001GL013737.
Su, H. T., Hsu, R. R., Chen, A. B., Wang, Y. C., Hsiao, W. S., Lai, W. C., ... & Fukunishi, H. (2003). Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, doi:10.1038/ nature01759.
Suzuki, T., M. Hayakawa, Y. Matsudo, and K. Michimoto (2006). How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan?, Geophys. Res. Lett., 33, L10806, doi:10.1029/2005GL025433.
Taylor, M. J., Bailey, M. A., Pautet, P. D., Cummer, S. A., Jaugey, N., Thomas, J. N., ... & Schuch, N. J. (2008). Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys. Res. Lett., 35(14). https://doi.org/10.1029/2008gl033984
Thomas, M. E., & Joseph, R. I. (1996). Astronomical refraction. Johns Hopkins apl technical digest, 17(3), 279.
Vadislavsky, E., Yair, Y., Erlick, C., Price, C., Greenberg, E., Yaniv, R., ... & Devir, A. (2009). Indication for circular organization of column sprite elements associated with eastern Mediterranean winter thunderstorms, J. Atmos. Sol. Terr. Phys., 71(17–18), 1835–1839, doi:10.1016/j.jastp.2009.07.001
Van der Velde, O. A., Lyons, W. A., Nelson, T. E., Cummer, S. A., Li, J., & Bunnell, J. (2007). Analysis of the first gigantic jet recorded over continental North America. J. Geophys. Res., 112, D20104, doi:10.1029/2007JD008575.
Van Der Velde, O. A., Bór, J., Li, J., Cummer, S. A., Arnone, E., Zanotti, F., ... & Farges, T. (2010). Multi‐instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J. Geophys. Res., 115, D24301, doi:10.1029/2010JD014442.
Wescott, E. M., Sentman, D., Osborne, D., Hampton, D., & Heavner, M. (1995). Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209–1212. doi : 10.1029/2007JD008575
Wescott, E. M., Sentman, D. D., Heavner, M. J., Hampton, D. L., Lyons, W. A., & Nelson, T. (1998). Observations of 'Columniform' sprites, J. Atmos. Sol. Terr. Phys., 60, 733-740, doi:10.1016/S1364-6826(98)00029-7
Wescott, E. M., Stenbaek‐Nielsen, H. C., Sentman, D. D., Heavner, M. J., Moudry, D. R., & Sabbas, F. S. (2001). Triangulation of sprites, associated halos and their possible relation to causative lightning and micro-meteors, J. Geophys. Res., 106(A6), 10467-10477, doi:10.1029/2000JA000182.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw