進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201815043900
論文名稱(中文) 氧化鍶沉積可承受負載之多孔鈦支架應用於非均相之轉酯化催化劑
論文名稱(英文) Strontium oxide deposited on a load-bearable and porous titanium scaffold as heterogeneous catalysts for transesterification
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 李沐軒
研究生(英文) Mu-Hsuan Lee
學號 N56055021
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-廖峻德
共同指導教授-劉浩志
共同指導教授-王士豪
口試委員-莊陽德
中文關鍵字 氧化鍶  催化劑  轉酯化反應  生質柴油  多孔   
英文關鍵字 Strontium oxide  Transesterification catalyst  Biodiesel  Porous titanium 
學科別分類
中文摘要 作為製造生質柴油常用的催化劑,氧化鍶具有轉化率高、反應時間短及可重複使用等優點,但反應後的氧化鍶會殘留於生質柴油中不容易回收,導致在分離上增加了很多程序以及產生廢水造成污染。將以已知的孔洞實驗參數及薄膜技術應用於生質柴油方面,以多孔材料 (多孔鈦) 作載體表面覆蓋氧化鍶,能夠增加氧化鍶反應時的接觸表面積,進而提高食用油 (或廢食用油) 轉化成生質柴油的效能,多孔催化劑試片於清洗後能夠回收再利用,具有循環再利用的功效,能有效減少分離回收上的步驟,因此發展多孔材料刻不容緩且具有廣泛的應用潛力。
本研究採用傳統粉末冶金技術製備多孔鈦,通過溶膠凝膠法把不同濃度之氧化鍶薄膜覆蓋在多孔鈦材料上,製作出含氧化鍶之多孔鈦催化劑。然後以橄欖油為原料,加入所製作之催化劑進行轉酯化反應。試片分析方面,以SEM觀察試片之橫截面,可觀察到其內部覆蓋有薄膜的孔洞結構。EDS分析中不同濃度下都偵測到鍶的訊號,再通過XRD分析確定所得之薄膜為氧化鍶。孔隙率分析中孔隙率隨濃度增加而下降,間接證明氧化鍶薄膜有附著到孔洞結構中。薄膜的機械強度利用了奈米壓痕試驗機進行硬度及刮痕測試來驗證,結果顯示氧化鍶薄膜具有一定的強度及黏附力。在轉化效用評估的部分,以DSC量測到沾有食用油的試片於64℃時會發生放熱反應,再通過拉曼光譜儀分析反應後的試片,觀察到生質柴油主要成分脂肪酸甲酯(FAME)的官能基,最後在XPS分析中確認產物含有FAME。
綜上所述,本研究所製作之含氧化鍶多孔鈦試片作為催化劑其可行性及有效性都得到驗證,通過分析結果證明試片能夠有效的把食用油轉化為生質柴油,其中孔洞結構能夠增加接觸表面外,其吸附性在反應過程中可把食用油吸附到催化劑內部,從而提升轉化效率。此外,催化劑能夠回收再用,省去過往使用氧化鍶作催化劑時需從產物中分離的步驟,因此十分適合應用於生質柴油的生產。
英文摘要 Strontium oxide deposited porous titanium (Ti) - based scaffolds are a promising approach for heterogeneous catalysts for transesterification. To be used as a heterogeneous catalyst, the strontium oxide film has a certain load capacity and the generation of either Sr ion release should be insignificant throughout a large timescale. The present study combines a porous structure appropriate for transesterification with a physically and chemically stable strontium oxide thin-film coating to create a load-bearing inspired filter. The as - designed strontium oxide - coated P-Ti (Srx-P-Ti) was made via a hydrothermal process, followed by a sol-gel method. Mechanical tests were conducted primarily on P-Ti, and chemical stability tests were conducted on Sr-P-Ti. The results show that proved that Srx-P-Ti_55 (x
= 0.5, 0.7M) sample as a catalyst can efficaciously carry out transesterification of
biodiesel. Sr0.5-P-Ti_55 as a catalyst has great potential for transesterification in the biodiesel process. Future may consider a batch or continuous biodiesel production in a more efficient heat source such as microwave.
論文目次 目錄
摘要 I
誌謝 XII
目錄 XIV
圖目錄 XVII
表目錄 XIX
第一章 緒論 1
1.1前言 1
研究動機 2
第二章 文獻回顧 3
2.1文獻探討 3
2.1.1生質柴油之製備 3
2.1.2催化劑的種類 4
2.1.3催化劑選用 7
2.1.4應用於轉酯化反應的加熱方法 10
2.1.5反應溫度對轉化率之影響 14
2.1.6甲醇量與催化劑用量之關係 15
2.1.7多孔鈦製程 17
2.1.8造孔劑選用 18
2.1.9孔隙率變數 20
2.2理論基礎 22
2.2.1轉酯化反應(Transesterification) 22
2.2.2水熱法(Hydrothermal method) 24
2.2.3阿基米德原理(Archimedes' method) 26
2.2.4溶膠凝膠法(Sol-gel process) 26
研究目的 28
第三章 實驗材料與方法 29
3.1實驗藥品 29
3.2實驗儀器 30
3.2.1真空高溫爐(氣氛控制碳化矽管型爐) 30
3.2.2掃瞄式電子顯微鏡 (SEM) 31
3.2.3 X光繞射分析儀 (XRD) 32
3.2.4奈米壓痕試驗儀Ⅱ(Nano-Indentation SystemⅡ) 35
3.2.5 熱掃描卡量計(DSC) 36
3.2.6 顯微拉曼光譜儀 (Raman Spectroscopy) 37
3.2.7傅立葉轉換紅外光譜 (FTIR) 39
3.2.8化學分析電子能譜儀(XPS) 41
3.3實驗架構及流程 43
3.3.1試片之製備 43
3.3.2實驗流程 44
第四章 試片成分分析 46
4.1 SEM顯微圖與EDS元素分析 46
4.2 XRD分析 47
4.3 孔隙率分析 49
4.4 薄膜強度測試 50
4.4.1 微硬度測試 51
4.4.2 刮痕測試 52
第四章總結 53
第五章 生質柴油轉化效果之評估 54
5.1 DSC分析 54
5.2轉化產物的評估 55
5.2.1生質柴油之轉酯化反應機制 56
5.2.2傅立葉紅外光譜 (FT-IR) 57
5.2.3 拉曼光譜 (Raman spectroscopy) 58
5.3 XPS分析 59
第五章總結 62
結論 63
未來展望 64
參考文獻 65
參考文獻 [1] A. Srivastava and R. Prasad, “Triglycerides-based diesel fuels,” Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 111–133, 2000.
[2] X. Liu, H. He, Y. Wang, and S. Zhu, “Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst,” Catal. Commun., vol. 8, no. 7, pp. 1107–1111, 2007.
[3] A. A. Refaat, “Biodiesel production using solid metal oxide catalysts,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 203–221, 2011.
[4] E. L. Dall’Oglio, P. T. de Sousa Jr, P. T. de J. Oliveira, L. G. de Vasconcelos, C. A. Parizotto, and C. A. Kuhnen, “Use of heterogeneous catalysts in methylic biodiesel production induced by microwave irradiation,” Quim. Nova, vol. 37, no. 3, pp. 411–417, 2014.
[5] M. Koberg, R. Abu-Much, and A. Gedanken, “Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst,” Bioresour. Technol., vol. 102, no. 2, pp. 1073–1078, 2011.
[6] C. Adams, J. F. Peters, M. C. Rand, B. J. Schroer, and M. C. Ziemke, “Investigation of soybean oil as a diesel fuel extender: endurance tests,” J. Am. Oil Chem. Soc., vol. 60, no. 8, pp. 1574–1579, 1983.
[7] A. W. Schwab, M. O. Bagby, and B. Freedman, “Preparation and properties of diesel fuels from vegetable oils,” Fuel, vol. 66, no. 10, pp. 1372–1378, 1987.
[8] C.-C. Chang and S.-W. Wan, “China’s motor fuels from tung oil,” Ind. Eng. Chem., vol. 39, no. 12, pp. 1543–1548, 1947.
[9] F. Ma and M. A. Hanna, “Biodiesel production: a review,” Bioresour. Technol., vol. 70, no. 1, pp. 1–15, 1999.
[10] T. Issariyakul, M. G. Kulkarni, L. C. Meher, A. K. Dalai, and N. N. Bakhshi, “Biodiesel production from mixtures of canola oil and used cooking oil,” Chem. Eng. J., vol. 140, no. 1, pp. 77–85, 2008.
[11] P. K. Sahoo and L. M. Das, “Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils,” Fuel, vol. 88, no. 9, pp. 1588–1594, 2009.
[12] S. P. Singh and D. Singh, “Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review,” Renew. Sustain. energy Rev., vol. 14, no. 1, pp. 200–216, 2010.
[13] A. Singh, B. He, J. Thompson, and J. Van Gerpen, “Process optimization of biodiesel production using alkaline catalysts,” Appl. Eng. Agric., vol. 22, no. 4, pp. 597–600, 2006.
[14] E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, “Synthesis of biodiesel via acid catalysis,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5353–5363, 2005.
[15] A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, and S. Miertus, “Catalytic applications in the production of biodiesel from vegetable oils,” ChemSusChem, vol. 2, no. 4, pp. 278–300, 2009.
[16] C. C. Akoh, S.-W. Chang, G.-C. Lee, and J.-F. Shaw, “Enzymatic approach to biodiesel production,” J. Agric. Food Chem., vol. 55, no. 22, pp. 8995–9005, 2007.
[17] J. M. Cerveró, J. Coca, and S. Luque, “Production of biodiesel from vegetable oils,” Grasas y aceites, vol. 59, no. 1, pp. 76–83, 2008.
[18] L. C. Meher, D. V. Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification—a review,” Renew. Sustain. energy Rev., vol. 10, no. 3, pp. 248–268, 2006.
[19] G. Vicente, M. Martınez, and J. Aracil, “Integrated biodiesel production: a comparison of different homogeneous catalysts systems,” Bioresour. Technol., vol. 92, no. 3, pp. 297–305, 2004.
[20] V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng, and N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain. Chem. Process., vol. 1, no. 1, p. 5, 2013.
[21] A. A. Refaat, N. K. Attia, H. A. Sibak, S. T. El Sheltawy, and G. I. ElDiwani, “Production optimization and quality assessment of biodiesel from waste vegetable oil,” Int. J. Environ. Sci. Technol., vol. 5, no. 1, pp. 75–82, 2008.
[22] F. Chai, F. Cao, F. Zhai, Y. Chen, X. Wang, and Z. Su, “Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst,” Adv. Synth. Catal., vol. 349, no. 7, pp. 1057–1065, 2007.
[23] A. Demirbas, “Biodiesel from sunflower oil in supercritical methanol with calcium oxide,” Energy Convers. Manag., vol. 48, no. 3, pp. 937–941, 2007.
[24] N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, and T. Yonemoto, “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst,” Bioresour. Technol., vol. 98, no. 2, pp. 416–421, 2007.
[25] P. Patil, V. G. Gude, S. Pinappu, and S. Deng, “Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions,” Chem. Eng. J., vol. 168, no. 3, pp. 1296–1300, 2011.
[26] J. Hernando, P. Leton, M. P. Matia, J. L. Novella, and J. Alvarez-Builla, “Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes,” Fuel, vol. 86, no. 10, pp. 1641–1644, 2007.
[27] A. A. Refaat, S. T. El Sheltawy, and K. U. Sadek, “Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation,” Int. J. Environ. Sci. Technol., vol. 5, no. 3, pp. 315–322, 2008.
[28] D. G. Cantrell, L. J. Gillie, A. F. Lee, and K. Wilson, “Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis,” Appl. Catal. A Gen., vol. 287, no. 2, pp. 183–190, 2005.
[29] S. Yan, H. Lu, and B. Liang, “Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production,” Energy & Fuels, vol. 22, no. 1, pp. 646–651, 2007.
[30] A. D’Cruz, M. G. Kulkarni, L. C. Meher, and A. K. Dalai, “Synthesis of biodiesel from canola oil using heterogeneous base catalyst,” J. Am. Oil Chem. Soc., vol. 84, no. 10, pp. 937–943, 2007.
[31] P. D. Patil, V. G. Gude, L. M. Camacho, and S. Deng, “Microwave-Assisted Catalytic Transesterification of Camelina Sativa Oil,” Energy & Fuels, vol. 24, no. 2, pp. 1298–1304, Feb. 2010.
[32] D. Dallinger and C. O. Kappe, “Microwave-assisted synthesis in water as solvent,” Chem. Rev., vol. 107, no. 6, pp. 2563–2591, 2007.
[33] A. Demirbaş, “Biodiesel from vegetable oils via transesterification in supercritical methanol,” Energy Convers. Manag., vol. 43, no. 17, pp. 2349–2356, 2002.
[34] F. Wiesbrock, R. Hoogenboom, and U. S. Schubert, “Microwave‐assisted polymer synthesis: state‐of‐the‐art and future perspectives,” Macromol. Rapid Commun., vol. 25, no. 20, pp. 1739–1764, 2004.
[35] Y. Groisman and A. Gedanken, “Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis,” J. Phys. Chem. C, vol. 112, no. 24, pp. 8802–8808, 2008.
[36] L. Perreux and A. Loupy, “A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations,” Tetrahedron, vol. 57, no. 45, pp. 9199–9223, 2001.
[37] C. O. Kappe, “Microwave dielectric heating in synthetic organic chemistry,” Chem. Soc. Rev., vol. 37, no. 6, pp. 1127–1139, 2008.
[38] A. Demirbas, “Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods,” Prog. energy Combust. Sci., vol. 31, no. 5, pp. 466–487, 2005.
[39] P. Lidström, J. Tierney, B. Wathey, and J. Westman, “Microwave assisted organic synthesis—a review,” Tetrahedron, vol. 57, no. 45, pp. 9225–9283, 2001.
[40] J. M. N. Van Kasteren and A. P. Nisworo, “A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification,” Resour. Conserv. Recycl., vol. 50, no. 4, pp. 442–458, 2007.
[41] L. M. G. De Carvalho et al., “Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends,” J. Braz. Chem. Soc., vol. 24, no. 4, pp. 550–557, 2013.
[42] K. Faungnawakij, B. Yoosuk, S. Namuangruk, P. Krasae, N. Viriya‐empikul, and B. Puttasawat, “Sr–Mg mixed oxides as biodiesel production catalysts,” ChemCatChem, vol. 4, no. 2, pp. 209–216, 2012.
[43] N. E. Leadbeater and L. M. Stencel, “Fast, easy preparation of biodiesel using microwave heating,” Energy & Fuels, vol. 20, no. 5, pp. 2281–2283, 2006.
[44] G. Kotan and A. Ş. Bor, “Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy,” Turkish J. Eng. Environ. Sci., vol. 31, no. 3, pp. 149–156, 2007.
[45] Z. Esen and Ş. Bor, “Processing of titanium foams using magnesium spacer particles,” Scr. Mater., vol. 56, no. 5, pp. 341–344, 2007.
[46] K. Nishiyabu, S. Matsuzaki, K. Okubo, M. Ishida, and S. Tanaka, “Porous graded materials by stacked metal powder hot-press moulding,” in Materials Science Forum, 2005, vol. 492, pp. 765–770.
[47] K. Nishiyabu, S. Matsuzaki, and S. Tanaka, “Net-shape manufacturing of micro porous metal components by powder injection molding,” in Materials science forum, 2007, vol. 534, pp. 981–984.
[48] A. K. Gain, H.-Y. Song, and B.-T. Lee, “Microstructure and mechanical properties of porous yttria stabilized zirconia ceramic using poly methyl methacrylate powder,” Scr. Mater., vol. 54, no. 12, pp. 2081–2085, 2006.
[49] M. Köhl, T. Habijan, M. Bram, H. P. Buchkremer, D. Stöver, and M. Köller, “Powder Metallurgical Near‐Net‐Shape Fabrication of Porous NiTi Shape Memory Alloys for Use as Long‐Term Implants by the Combination of the Metal Injection Molding Process with the Space‐Holder Technique,” Adv. Eng. Mater., vol. 11, no. 12, pp. 959–968, 2009.
[50] Y. Torres, S. Lascano, J. Bris, J. Pavón, and J. A. Rodriguez, “Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques,” Mater. Sci. Eng. C, vol. 37, pp. 148–155, 2014.
[51] M. Gahlert, T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, and W. Erhardt, “Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs,” Clin. Oral Implants Res., vol. 18, no. 5, pp. 662–668, 2007.
[52] H. Lee et al., “Dual properties of zirconia coated porous titanium for a stiffness enhanced bio-scaffold,” Mater. Des., vol. 132, pp. 13–21, 2017.
[53] B. Freedman, R. O. Butterfield, and E. H. Pryde, “Transesterification kinetics of soybean oil 1,” J. Am. Oil Chem. Soc., vol. 63, no. 10, pp. 1375–1380, 1986.
[54] K. Byrappa and T. Adschiri, “Hydrothermal technology for nanotechnology,” Prog. Cryst. Growth Charact. Mater., vol. 53, no. 2, pp. 117–166, 2007.
[55] M. T. Reagan, J. G. Harris, and J. W. Tester, “Molecular Simulations of Dense Hydrothermal NaCl− H2O Solutions from Subcritical to Supercritical Conditions,” J. Phys. Chem. B, vol. 103, no. 37, pp. 7935–7941, 1999.
[56] M. C. de Andrade, M. R. T. Filgueiras, and T. Ogasawara, “Hydrothermal nucleation of hydroxyapatite on titanium surface,” J. Eur. Ceram. Soc., vol. 22, no. 4, pp. 505–510, 2002.
[57] I.-H. Oh, N. Nomura, and S. Hanada, “Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering,” Mater. Trans., vol. 43, no. 3, pp. 443–446, 2002.
[58] M. Vallet-Regí, “Ceramics for medical applications,” J. Chem. Soc. Dalt. Trans., no. 2, pp. 97–108, 2001.
[59] G. J. Owens et al., “Sol–gel based materials for biomedical applications,” Prog. Mater. Sci., vol. 77, pp. 1–79, 2016.
[60] Y. Oshida, Bioscience and bioengineering of titanium materials. Elsevier, 2010.
[61] R. C. Weast, “CRC Handbook of Chemistry and Physics, 1st student ed,” CRC, Boca Raton, Louisiana, pp. D99–D103, 1988.
[62] 謝雲生, “雷射拉曼光譜簡介,” 物理雙月刊, vol. 7, no. 1, pp. 25–28, 1985.
[63] 李冠卿, “表面強化拉曼散射,” 物理雙月刊, vol. 5, no. 4, pp. 185–188, 1983.
[64] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett., vol. 26, no. 2, pp. 163–166, 1974.
[65] P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry, vol. 171. John Wiley & Sons, 2007.
[66] J. F. Watts and J. Wolstenholme, “An introduction to surface analysis by XPS and AES,” 2003.
[67] H. F. McMurdie et al., “Standard X-ray diffraction powder patterns from the JCPDS research associateship,” Powder Diffr., vol. 1, no. 2, pp. 64–77, 1986.
[68] G. F. Ghesti et al., “Application of Raman spectroscopy to monitor and quantify ethyl esters in soybean oil transesterification,” JAOCS, J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 597–601, 2006.
[69] M. M. Maru et al., “Biodiesel compatibility with carbon steel and HDPE parts,” Fuel Process. Technol., vol. 90, no. 9, pp. 1175–1182, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw