進階搜尋


下載電子全文  
系統識別號 U0026-2407201814474100
論文名稱(中文) 多參考點最小二乘複頻域法於環境振動之模態參數識別
論文名稱(英文) Modal-Parameter Identification from Ambient Vibration Data by the Poly-reference Least Squares Complex Frequency Domain Method
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 姚明逸
研究生(英文) Ming-Yi Yao
學號 P46051238
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-江達雲
口試委員-崔兆棠
口試委員-林章生
中文關鍵字 環境振動  頻率響應函數  穩定圖  模態可信度 
英文關鍵字 ambient vibration  frequency response function  stabilization diagram  modal assurance criterion 
學科別分類
中文摘要 模態參數識別時,若待識別系統受環境振動影響,此時激勵難以量測,故如何僅利用系統響應資料識別模態參數為本文重點。在此假設系統激勵為定常過程藉此達到近似環境振動,因定常過程具統計特性可有利於分析,且可描述環境振動之隨機性。但如何在此情況進行有效的識別亦為本文之重點。本文主要探討頻率域之模態參數識別,針對前人提出的多參考點最小二乘複頻域法進行研究,達到識別結構受環境振動之狀況。為求真實性進一步以真實地震資料進行測試,另一方面引入假想系統概念使識別法可應用於非定常白訊激勵。吾人提出兩種模態驗證法驗證識別結果,穩定圖與模態可信度(MAC)。穩定圖藉由提高有理分式模型中分子及分母項的階數進行計算,藉由不同階數計算的模態建立穩定圖。模態可信度驗證識別法之模態振型與理論模態振型之相關性,藉此達到振型之驗證。根據數值模擬結果,運用此方法在系統環境振動的情況下仍具有良好精確性。
英文摘要 If a system is subjected to ambient vibration, it is difficult to measure the excitation data to be employed to implement modal identification. In this thesis, discusses how to use structural response data only in modal parameter identification. To achieve the simulation with ambient vibration, we use the white noise excitation to simulate the ambient vibration in this thesis. How to achieve effective identification, in this case, is also important. This thesis focuses on modal parameter identification in the frequency domain, and we mainly apply poly-reference least squares complex frequency domain method at ambient vibration situation. We introduce the real earthquake data to approximate real situation. On the other hand, the concept of the hypothetical system is introduced to make the identification method applicable to nonwhite excitation. We introduced two modal verification methods, the stabilization diagram and modal assurance criterion (MAC) to verify the identification result. Stabilization diagram is constructed by increasing the polynomial order of the frequency response function. The other method is calculating the correlation between the mode shape of the identification method and the exact mode shape to achieve the verification of the mode shape. According to the results of the numerical simulation, the proposed method has demonstrated the effectiveness of a system under the consideration of ambient vibration.
論文目次 摘要...I
誌謝...XIII
目錄...XIV
表目錄...XVII
圖目錄...XVIII
第一章緒論...1
1.1引言...1
1.2研究背景...2
1.3文獻回顧...4
1.4研究動機與目的...6
1.5論文架構...7
第二章模態分析理論...9
2.1引言...9
2.2比例阻尼系統之模態分析...9
2.3非比例阻尼系統之模態分析...13
2.4頻響函數...17
第三章環境振動之頻率域模態參數識別...19
3.1引言...19
3.2隨機過程...20
3.2.1定常過程分析...21
3.2.2功率頻譜密度函數...22
3.3多參考點最小二乘複頻域法...24
3.4模態驗證...30
3.4.1穩定圖(Stabilization Diagram)...30
3.4.2模態可信度(Modal Assurance Criterion, MAC)...31
第四章數值模擬...33
4.1引言...33
4.2定常白訊之數值模擬...33
4.2.1模擬結果討論...35
4.3定常白訊於五倍阻尼鏈模型之數值模擬...36
4.3.1模擬結果討論...37
4.4地震訊號於鏈模型之模態參數識別...38
4.4.1模擬結果討論...40
4.5地震訊號於五倍阻尼鏈模型之模態參數識別...40
4.5.1模擬結果討論...41
4.6高頻定常非白訊之數值模擬...42
4.6.1模擬結果討論...44
4.7中頻定常非白訊之數值模擬...45
4.7.1模擬結果討論...46
4.8低頻定常非白訊之數值模擬...47
4.8.1模擬結果討論...48
第五章結論...49
參考文獻...51
參考文獻 [1]D. J. Ewins, Modal testing: theory and practice Vol. 15: Research studies press Letchworth, 1984.
[2]T. Caughey and M. E. O’Kelly, "Classical normal modes in damped linear dynamic systems", Journal of Applied Mechanics, Vol. 32, pp. 583-588, 1965.
[3]C. W. Clough and J. Penzien, Dynamic of Structure, 2nd: McGram-Hill. Inc, 1993.
[4]J. O. Hougen and R. A. Walsh, "Pulse testing method", Chemical Engineering Progress,Vol. 57, pp. 69-79, 1961.
[5]E. O. Brigham and R. Morrow, "The fast Fourier transform", IEEE spectrum, Vol. 4, pp. 63-70, 1967.
[6]F. R. Spitznogle and A. H. Quazi, "Representation and Analysis of Time‐Limited Signals Using a Complex Exponential Algorithm", The Journal of the Acoustical Society of America, Vol. 47, pp. 1150-1155, 1970.
[7]W. SMITH, "Least-squares time-domain method for simultaneous identification of vibration parameters from multiple free-response records", the 22nd Structures, Structural Dynamics and Materials Conference, 1981, p. 530.
[8]H. Vold, J. Kundrat, G. T. Rocklin, and R. Russell, "A multi-input modal estimation algorithm for mini-computers", SAE Technical Paper 0148-7191, 1982.
[9] M. H. Richardson and D. L. Formenti, "Parameter estimation from frequency response measurements using rational fraction polynomials", Proceedings of the 1st international modal analysis conference, 1982, pp. 167-186.
[10]H. Van Der Auweraer, P. Guillaume, P. Verboven, and S. Vanlanduit, "Application of a fast-stabilizing frequency domain parameter estimation method", Journal of dynamic systems, measurement, and control, Vol. 123, pp. 651-658, 2001.
[11]P. Guillaume, P. Verboven, S. Vanlanduit, H. Van Der Auweraer, and B. Peeters", A poly-reference implementation of the least-squares complex frequency-domain estimator", Proceedings of IMAC, 2003, pp. 183-192.
[12]J. Kirshenboim, "Real vs complex normal mode shapes”, International Modal Analysis Conference, 5 th, London, England, 1987, pp. 1594-1599.
[13]M. Wei, R. Allemang, and D. Brown, "Real-normalization of measured complex modes”, Proceedings of the fifth International Modal Analysis Conference, 1987, pp. 708-12.
[14]D. Henrion and M. Šebek, "Polynomial and Matrix Fraction Description”, Retrieved from.
[15]N. C. Singer and W. P. Seering, "Preshaping command inputs to reduce system vibration”, Journal of Dynamic Systems, Measurement, and Control, Vol. 112, pp. 76-82, 1990.
[16]林昱勳, "多參考點最小二乘複頻域法於模態干涉系統之模態參數識別研究”, 成功大學航空太空工程學系學位論文, 2017.
[17]J.-P. Eckmann and D. Ruelle, "Ergodic theory of chaos and strange attractors”, in The Theory of Chaotic Attractors, ed: Springer, 1985, pp. 273-312.
[18]I. N. Sneddon, Fourier transforms: Courier Corporation, 1995.
[19]S. Ibrahim, R. Brincker, and J. Asmussen, "Modal parameter identification from responses of general unknown random inputs”, Proceedings of SPIE - The International Society for Optical Engineering 1996, pp. 446-452.
[20]B. Peeters, H. Van der Auweraer, P. Guillaume, and J. Leuridan, "The PolyMAX frequency-domain method: a new standard for modal parameter estimation?”, Shock and Vibration, Vol. 11, pp. 395-409, 2004.
[21]T. C. Hsia, "System identification: least-squares methods”, 1977.
[22]C. F. Van Loan, "The ubiquitous Kronecker product”, Journal of computational and applied mathematics, Vol. 123, pp. 85-100, 2000.
[23]A. Edelman and H. Murakami, "Polynomial roots from companion matrix eigenvalues”, Mathematics of Computation, Vol. 64, pp. 763-776, 1995.
[24]C. Kane, J. E. Marsden, M. Ortiz, and M. West, "Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems”, International Journal for Numerical Methods in Engineering, Vol. 49, pp. 1295-1325, 2000.
[25]R. Martin, "Noise power spectral density estimation based on optimal smoothing and minimum statistics”, IEEE Transactions on speech and audio processing, Vol. 9, pp. 504-512, 2001.
[26]B. Porat, Digital processing of random signals: theory and methods:Courier Dover Publications, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw