進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201812194200
論文名稱(中文) 應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道
論文名稱(英文) Study on Five-level Inverter Exciting Source for Contactless Power Array Track with Segment-excited Inductively Coupled Structure
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 廖芝翊
研究生(英文) Chih-Yi Liao
學號 N26054312
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 召集委員-林法正
口試委員-莫清賢
口試委員-陳建富
指導教授-李嘉猷
中文關鍵字 非接觸式電動車供電軌道  多階變流器  感應耦合結構陣列區塊  分段激發控制系統 
英文關鍵字 contactless EV power track  multi-level inverter  inductively coupled structure array  segment-excited control system 
學科別分類
中文摘要 本論文旨就電動載具之供電方式,應用非接觸式電能傳輸技術,並以五階變流器作為陣列區塊線圈之高頻激勵電源,研製具分段激發之非接觸式電動載具供電陣列軌道。文中首先透過磁場模擬軟體分析感應耦合結構,選用具均勻磁場分佈之環型結構,並根據模擬結果選定耦合結構尺寸以增進電能傳輸穩定度。嗣經諧振架構特性分析,採用LCCL複合式網絡作為軌道供電側諧振架構,且於載具受電側選用並聯諧振架構,俾以提升供電軌道傳輸效能。非接觸式供電軌道則以陣列區塊構成,且設置分段激發機制,以感應線圈電路偵測軌道上載具位置,並採用單晶片微控制器作分段激發控制,適時開啟陣列軌道區塊開關,以避免同時激勵全部軌道陣列區塊所致之不必要電能耗損。最後經由實驗量測結果,所提陣列軌道區塊與電能拾取器於垂直間距10 cm之最佳對位下,可得最大輸出功率為854 W,其對應之電能傳輸效率為80%,而於輸出功率431 W時,得具最高傳輸效率85%。
英文摘要 This thesis is aimed to utilize the technology of contactless power transmission and implement contactless electric vehicle (EV) power track transfer system with segment-excited inductively coupled structure. A five-level inverter used as the primary exciting source instead of the DC source. To increase lateral displacement and longitudinal misalignment tolerances between the EV and the track, the toroidal inductively coupled structure with a uniform magnetic field has been proposed. The segment-excited control has been added to overall power track which consists of pad arrays to reduce power loss and raise the efficiency of the system. According to theoretical analysis, the appropriate resonant circuits are utilized for improving power transmission ability and efficiency. According to the experimental results under 10 cm air-gap, the output power in the system reached 854 W with transmission efficiency of 80%, and the maximum transmission efficiency reached 85% at 431 W output power.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 2
1-3 研究方法 5
1-4 論文主要貢獻 6
1-5 論文大綱 7
第二章 非接觸式供電軌道原理與特性 8
2-1 前言 8
2-2 感應電能傳輸原理 8
2-3 感應線圈之非理想效應 11
2-3-1 集膚效應 11
2-3-2 近接效應 13
2-4 非接觸式供電軌道之感應耦合原理 14
2-4-1 感應耦合結構電路模型分析 14
2-4-2 耦合能力推導分析 16
2-5 多階變流器激勵源 17
2-6 分段激發控制機制 19
第三章 感應耦合結構模擬與分析 21
3-1 前言 21
3-2 感應耦合結構線圈分析 21
3-2-1 軌道線圈結構模擬及分析 21
3-2-2 電能拾取器線圈結構模擬與分析 26
3-2-3 導磁條配置模擬與分析 27
3-3 諧振電路分析 29
3-3-1 初級側諧振電路 29
3-3-2 次級側諧振與反射阻抗分析 32
第四章 非接觸式電動車供電軌道系統電路 36
4-1 前言 36
4-2 整體系統電路架構 36
4-3 感應耦合結構與諧振電路參數設計 37
4-3-1 感應耦合線圈設計 38
4-3-2 諧振電路設計 39
4-4 多階變流器電路架構 40
4-5 電能拾取器電路架構 42
4-6 分段激發控制系統 44
4-6-1 單晶片控制電路 45
4-6-2 感應線圈電路 45
4-6-3 軌道陣列區塊電源開關模組 47
4-7 供電軌道電源配置 48
4-8 非接觸式電動車供電軌道設計流程 49
第五章 系統模擬與實驗結果 51
5-1 前言 51
5-2 供電軌道系統規格 51
5-3 Simplis電路模擬 52
5-4 多階變流器與陣列軌道區塊實驗結果與波形量測 54
5-4-1 多階變流器激勵源實驗結果與波形量測 55
5-4-2 陣列軌道區塊實驗結果與波形量測 57
5-5 非接觸式供電軌道實驗結果 61
5-5-1 分段激發控制系統量測 61
5-5-2 整體供電軌道系統量測 63
5-5-3 非接觸式供電 64
第六章 結論與未來研究方向 66
6-1 結論 66
6-2 未來研究方向 67
參考文獻 68
參考文獻 [1] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015.
[2] C. Y. Huang, J. T. Boys, G. A. Covic, and M. Budhia, “Practical considerations for designing IPT system for EV battery charging,” in Proc. IEEE VPPC, 2009, pp. 402-407.
[3] S. Y. Hui, “Planar wireless charging technology for portable electronic products and Qi,” in Proc. IEEE, vol. 101, no. 6, pp. 1290-1301, Jun. 2013.
[4] W. X. Zhong, Xun Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[5] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
[6] 胡采梅,具分段激發疊圈型感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2016年。
[7] 王郁淇,非接觸式電動車供電軌道系統之區塊分段激發感應耦合結構,國立成功大學電機工程學系碩士論文,2017年。
[8] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[9] 林采樺,具改良型感應耦合結構之非接觸式條帶狀供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[10] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, pp. 1133-1136.
[11] C. Zheng, L. Zhang, X. Zhac, J. Choe, and J. Lai “Asymmetrical loosely coupled transformer for wireless laptop charger with higher misalignment tolerance,” in Proc. IEEE ECCE, 2015, pp. 3119-3126.
[12] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[13] 林哲立,植入式神經電刺激器之非接觸式射頻饋電電路研製,國立成功大學電機工程學系碩士論文,2012年。
[14] Wireless Electric Vehicle Charging Technology. [Online]. Available: https://www.qualcomm.com/solutions/automotive/wevc, 2017.
[15] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[16] 張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[17] 陳奕霖,具雙槽口型電能拾取器結構之非接觸式條帶狀感應供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[18] S. Jeong, Y. J. Jang, and D. Kum, “Economic analysis of the dynamic charging electric vehicle,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6368-6377, Nov. 2015.
[19] G. Covic, M. G. Kissin, D. Kacprzak, N. Clausen, and H. Hao, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” in Proc. IEEE ECCE, 2011, pp. 1832-1838.
[20] H. H. Wu, A. Gilchrist, K. Sealy, P. Israelsen, and J. Muhs, “A review on inductive charging for electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 37-49, May 2015.
[21] Z. Pantic, S. M. Lukic, and K. Lee, “Reflexive field containment in dynamic inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4592-4602, Sep. 2014.
[22] A. Echols, S. Mukherjee, M. Mickelsen, and Z. Pantic, “Communication infrastructure for dynamic wireless charging of electric vehicles,” in Proc. IEEE WCNC, 2017, pp. 1-6.
[23] Z. Pantic, K. Lee, and S. Lukic “Inductive power transfer by means of multiple frequencies in the magnetic link,” in Proc. IEEE ECCE, 2013, pp. 2912-2919.
[24] Hardware design for dynamic wireless charging of an electric bus. [Online]. Available: https://conference.usu.edu/selectshowcase/includes/ Posters/ChargingInfrastructureAndGridIntegration/Hardware Design for Dynamic Wireless Charging of an Electric Bus.pdf, 2016.
[25] Bombardier Inc. PRIMOVE true e-mobility. [Online]. Available: http://
primove.bombardier.com/media/news/#125-game-changing-e-, 2018.
[26] General Information of INTIS for Developments of Wireless Electric Vehicles in INTIS Website. [Online]. Available: http://www.intis.
de/intis/mobility.html, 2016.
[27] G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276-1289, Jan. 2013.
[28] M. Ibrahim, L. Pichon, L. Bernard, A. Razek, J. Houivet, and O. Cayol, “Advanced modeling of a 2-kW series–series resonating inductive charger for real electric vehicle,” IEEE Trans. Veh. Technol., vol. 64, no. 2, pp. 421-430, May 2016.
[29] Z. Pantic, K. Lee, and S. M. Lukic, “Receivers for multifrequency wireless power transfer: design for minimum interference,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 234-241, Mar. 2015.
[30] C. Zheng, J. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, and D. Anderson, “High-efficiency contactless power transfer system for electric vehicle battery charging application,” IEEE Trans. Power Electron, vol. 3, no. 1, pp. 65-74, Mar. 2015.
[31] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[32] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[33] C. Liou, C. Kuo, and S. Mao, “Wireless-power-transfer system using near-field capacitively coupled resonators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 9, pp. 898-902, Sep. 2016.
[34] J. Lu, P. Lin, X. Li, W. Li, G. Zhu, S. Wong, J. Jiang, and F. Liu, “Research on seamless transfer from CC to CV modes for IPT EV charging system based on double-sided LCC compensation network,” in Proc. IEEE ECCE, 2016, pp. 1-6.
[35] D. Iannuzzi et al., “Analysis and parameters optimization of a contactless IPT system for EV charger,” in Proc. IEEE APEC, 2014, pp. 1654-1661.
[36] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, July 2004.
[37] J. T. Boys, N. A. Keeling, and G. A. Covic, “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744-751, Feb. 2010.
[38] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148-157, Feb. 2004.
[39] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1547-1554, Dec. 2005.
[40] H. H. Wu, A. Gilchrist, D. Bronson, and K. D. Sealy, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585-595, Apr. 2012.
[41] J. Rodriguez, J. Lai, and Z. P. Fang, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Elec., vol. 49, no. 4, pp. 724-738, 2002.
[42] B. X. Nguyen, W. Peng, and D. M. Vilathgamuwa, “Multilevel converter topologies based high power inductive power transfer systems,” in Proc. IEEE ICSET, 2016, pp. 264-269.
[43] J. I. Rodriguez and S. B. Leeb, “A multilevel inverter topology for inductively coupled power transfer,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1607-1617, Nov. 2006.
[44] B. X. Nguyen, D. M. Vilathgamuwa, G. Foo, A. Ong, P. K. Sampath, and U. K. Madawala, “Cascaded multilevel converter based bidirectional inductive power transfer (BIPT) system,” in Proc. IEEE IPEC, 2014, pp. 2722–2728.
[45] 李嘉猷,新複橋式步進電壓變流器之分析與設計,國立成功大學電機工程學系碩士論文,1982年。
[46] K. Song, C. Zhu, K. E. Koh, T. Imura, and Y. Hori, “Wireless power transfer for running EV powering using multi-parallel segmented rails,” in Proc. IEEE WoW, 2015, pp. 1-6.
[47] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers, IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-76, Jun. 1975.
[48] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832-5841, Dec. 2013.
[49] S. Y. Jeong, H. G. Kwak, G. Jang, S. Y. Choi, and C. T. Rim, “Dual-purpose non-overlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers,” IEEE Trans. Power Electron., pp. 1-11, Oct. 2017.
[50] G. Nagendra, L. Chen, G. A. Covic, and J. Boys, “Detection of EVs on IPT highways,” in Proc. IEEE APEC, 2014, pp. 1604-1611.
[51] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. IEEE Power Syst. Technol. Conf., 2000, pp. 85-90.
[52] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[53] 蔡霈裕,多環交疊型無線充電平台之優化設計,國立成功大學電機工程學系碩士論文,2015年。
[54] PIC30F4011 Data Sheet, Microchip Technology Inc., 2004.
[55] 曾百由,dsPIC數位訊號控制器原理與應用-MPLAB C30開發實務,宏友圖書出版公司,台灣,2009年。
[56] HD74LS86P Datasheet, Renesas Inc., 2005.
[57] TLP350 Datasheet, Toshiba Inc.,2003.
[58] IXFH26N50Q Datasheet, IXYS Inc., 2002.
[59] ARDUINO LLC Inc. Arduino UNO & Genuino UNO. [Online].
Available:https://www.arduino.cc/
[60] HA17393 Datasheet, Renesas Inc., 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw