進階搜尋


下載電子全文  
系統識別號 U0026-2407201811300100
論文名稱(中文) 含希夫鹼基團之芳香1,3,4-噁二唑衍生物:合成、鑑定及在高分子發光二極體之應用
論文名稱(英文) Aromatic 1,3,4-Oxadiazolyl Derivative with Terminal Schiff Base Groups: Synthesis, Characterization and Application in PLEDs
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳建年
研究生(英文) Jian–Nian Chen
學號 N36054194
學位類別 碩士
語文別 中文
論文頁數 95頁
口試委員 口試委員-劉瑞祥
口試委員-吳逸謨
口試委員-吳文中
口試委員-吳知易
指導教授-陳雲
中文關鍵字 高分子發光二極體  濕式製程  電洞緩衝材料  噁二唑  希夫鹼 
英文關鍵字 PLEDs  solution process  hole buffer material  oxadiazole  Schiff base 
學科別分類
中文摘要 過去的這二十年,有機或高分子發光二極體(OLEDs, PLEDs)因為可以應用於平面顯示器或固態照明等等而受到許多關注,其發光機制為給予一偏壓,電子與電洞分別從陰極與陽極注入,並傳輸到發光層再結合後放出光。OLED元件的製作方式是以真空蒸鍍(Vacuum Thermal Evaporation)的方式成膜,製程較複雜且設備成本高,PLED則大多採用濕式製程(Solution Process)的方式成膜,有製程簡便、成本低、能應用於大面積等優點,因此能使用濕式製程成膜會是更好選擇。
元件要有高效率的表現,電子與電洞在發光層內數量的平衡相當重要,然而大部分有機材料特性,電洞的傳輸速度遠大於電子,發光層內電子與電洞數量不平衡,造成再結合比例低。解決的方法有導入電子傳輸層(Electron Injection Layer, EIL)、電子阻擋層(Electron Blocking Layer, EBL) [1]或電洞阻擋層(Hole Blocking Layer, HBL)[2]等等,其中使用電洞緩衝層(Hole Buffer Layer, HBL)(下文的HBL皆表示電洞緩衝層)將電洞的傳輸速率降低也是可以提高有機發光二極體元件效率的方法之一。
本研究所使用之化合物為張雅婷同學合成的,利用Suzuki Coupling Reaction和Schiff Base Condensation合成出主體為1,3,4-噁二唑基團與周圍導入兩個希夫鹼基團的化合物(M1),以核磁共振光譜(1H-NMR)、基質輔助雷射脫附游離飛行質譜儀 (MALDI/TOF-MS)、鑑定其結構,分析其熱性質、光學性質、電化學性質、膜態,並將其作為電洞緩衝層應用於高分子發光二極體,測量電激發光的特性。
M1熱裂解溫度(Thermal Decomposition Temperature, Td)為264oC,熱穩定性高;M1的薄膜態螢光放光峰為560 nm,放光強度很小,因此不會影響元件本身的光色;循環伏安法觀察並計算得到M1的最高占有分子軌域(HOMO)為-5.29 eV,最低未占有分子軌域(LUMO)則是-2.46 eV,從HOMO能階得知M1具有電洞緩衝的特性。
本研究利用濕式製程的旋轉塗佈將M1作為電洞緩衝層應用於多層有機發光二極體元件(ITO/PEDOT:PSS/HBL/SY-PPV/LiF/Al ),在未應用電洞緩衝層的元件中,最大亮度為6,877 cd/m2,最大電流效率為2.23 cd/A;應用M1作為電洞緩衝層的元件中,最大亮度提高至25,693 cd/m2,最大電流效率則提升到7.84 cd/A。Y. Divayana團隊利用真空蒸鍍將電洞阻擋材料BCP導入元件結構(ITO/m-MTDATA/BCP/NPB/Alq3/Mg:Al ),應用BCP的元件最大亮度未得到提升,但最大電流效率從2.5 cd/A提升至3.25 cd/A[2]。Zhaoyue Lu團隊使用真空蒸鍍將電洞阻擋材料PBD導入元件(ITO/CuPc/PBD/NPB/Alq3/LiF/Al ),未應用PBD的元件中,最大亮度約為7500 cd/m2,最大電流效率約為1.40 cd/A;應用PBD作為電洞緩衝層的元件中,最大亮度提升至約9800 cd/m2,最大電流效率則提升到2.00 cd/A[3]。與以上兩個團隊的元件比較,本研究使用的M1在同為電洞緩衝層的應用上,無論是最大亮度或是最大電流效率都有更大幅度的提升。
由研究結果得知,以M1為電洞緩衝層,除了具有優良的電洞緩衝能力外,對於電子阻擋的能力也有提升,因此能夠使到達發光內之電子與電洞的數量更加平衡,元件的表現便大幅提升。與以上兩個團隊的元件比較,元件的表現有更明顯的提升,M1還可以使用濕式製程的方式成膜,在製程簡便和成本較低下更具有優勢,因此M1是具有發展潛力的新穎電洞緩衝材料。
英文摘要 Organic light-emitting diodes (OLEDs) have attracted considerable attention because of their promising applications in flat panel displays and solid-state lighting devices. Generally, organic light emitting diodes (OLEDs) are fabricated by vacuum thermal evaporation whereas polymer light emitting diodes (PLEDs) are fabricated by solution process. Vacuum evaporation leads to high cost and complicated architectures. On the other hand, the advantages of solution process are mainly low cost and large area application. In order to enhance device efficiency, charge balance is very important. In this study, we have successfully synthesized a new material M1 by the Suzuki-coupling reaction and Schiff base condensation. The M1 is composed of 1,3,4-oxadiazolyl core with two trihydroxy tert-butyl groups, capable of being applied as hole buffer layer (HBL) by solution process in PLED devices to reduce hole mobility and enhance device efficiency. The thermal decomposition temperature (Td, at 5% weight loss) of M1 was about 264oC. The HOMO and LUMO levels of M1 were -5.29 eV and -2.46 eV, respectively, as estimated from the onset oxidation and onset reduction potentials measured in cyclic voltammogram. Multilayer PLED devices [ITO/PEDOT:PSS/M1(HBL)/SY-PPV/LiF/Al] have been successfully fabricated using spin-coated M1 as hole buffer layer. The maximum luminance and maximum current efficiency of the device with the optimized thickness of M1 (14 nm) were 25,693 cd/m2 and 7.84 cd/A. This performance is superior to the device without HBL (6,877 cd/m2, 2.23 cd/A). Our results indicate that spin-coated, M1 is a potential hole buffer materials applicable in optoelectronic devices.
論文目次 摘要 I
誌謝 XIII
目錄 XIV
表目錄 XVII
圖目錄 XVIII
第一章 緒論 1
1-1. 前言 1
1-2. 理論基礎 4
1-2-1. 有機材料的共軛導電特性 4
1-2-2. 螢光理論 6
1-2-3. 影響螢光強度的主要因素 8
1-2-4. 分子間激發態(Interchain Excitons)和分子內激發態(Intrachain Excitons) 11
1-2-5. 能量轉移機制 12
1-3. 元件發光原理 15
1-3-1. 光激發光 15
1-3-2. 電激發光 16
1-4. 元件結構 18
1-4-1. 單層元件 18
1-4-2. 多層元件 20
第二章 文獻回顧 22
2-1. 有機電激發光材料的分類 22
2-1-1. 電子注入/傳輸材料(EIM/ETM) 24
2-1-2. 電洞注入/傳輸材料(HIM/HTM) 25
2-1-3. 共軛高分子發光材料 26
2-1-4. 電洞緩衝材料(HBM) 28
2-2. 有機發光二極體的效率 29
2-2-1. 有機發光二極體效率之影響參數 29
2-2-2. 增進電子與電洞數目平衡的方法 30
2-3. 濕式製程 32
2-4. 希夫鹼的發現與應用 34
2-5. Suzuki-Miyaura Coupling Reaction 37
2-6. 研究動機 38
第三章 實驗內容 39
3-1. 實驗裝置與設備 39
3-2. 鑑定儀器 41
3-3. 物性與光電測量儀器 43
3-4. 實驗藥品與材料 51
3-5. 反應步驟與結果 53
3-6. 元件的製作與測量 56
3-6-1. 元件製作流程與清洗 56
3-6-2. 製備電洞注入層、電洞緩衝層、發光層、電子注入層與陰極的詳細說明 57
3-6-3. Hole-Only元件製備 58
3-6-4. 蒸鍍系統 58
3-6-5. 元件測量 60
第四章 結果與討論 61
4-1. 化合物的合成與鑑定 61
4-1-1. 核磁共振光譜(NMR) 61
4-1-2. 基質輔助雷射脫附游離飛行質譜儀(MALDI/TOF-MS) 65
4-2. 熱性質分析 67
4-2-1. 熱重分析(TGA) 67
4-2-1. 微差式掃描熱卡計分析(DSC) 68
4-3. M1光學性質分析 70
4-3-1. UV/Vis吸收光譜及PL放光光譜 70
4-4. 電化學性質分析 73
4-5. M1成膜性質分析 75
4-6. 高分子發光二極體元件特性 78
4-6-1. 元件結構與能階 78
4-6-2. M1應用於元件之電激發光性質 80
4-6-3. Hole-Only元件(HOD) 85
第五章 結論 87
參考資料 89
參考文獻 1. Hagen J.A., Li W., Steckl J., and Grote J.G., Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Applied Physics Letters, 2006. 88(17): p. 3.
2. Divayana Y., Chen B.J., Sun X.W., and Sarma K.S., Organic light-emitting devices with a hole-blocking layer inserted between the hole-injection layer and hole-transporting layer. Applied Physics Letters, 2006. 88(8): p. 3.
3. Lü Z., Deng Z., Zheng J., Xu D., Chen Z., Zhou E., and Wang Y., Organic light-emitting diodes with 2-(4-biphenylyl)-5 (4-tert-butyl-phenyl)-1, 3, 4-oxadiazole layer inserted between hole-injecting and hole-transporting layers. Vacuum, 2010. 84(11): p. 1287-1290.
4. 陳金鑫 and 黃孝文, OLED: 有機電激發光材料與元件. 2005: 五南圖書出版股份有限公司.
5. Pope M., Magnante P., and Kallmann H.P., Electroluminescence in organic crystals. Journal of Chemical Physics, 1963. 38(8): p. 2042-&.
6. Tang C.W. and Vanslyke S.A., Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
7. Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burn P.L., and Holmes A.B., Light-emitting-diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539-541.
8. 段啟聖, 化工資訊雜誌與商情. 2005. P. P. 40.
9. 郭昭輝, 塑膠資訊雜誌, 2002.
10. 吳育星, 含二乙二醇乙醚基芳香 1, 2, 4-三氮唑衍生物的合成, 鑑定與光電性質. 成功大學化學工程學系學位論文, 2013: p. 1-82.
11. Valeur B. and Berberan-Santos M.N., Molecular fluorescence: Principles and applications. 2012: John Wiley & Sons.
12. Lakowicz J.R., Principles of fluorescence spectroscopy, (1999). 2004, Kluwer Academic/Plenum Publishers, New York.
13. Skoog D.A., Holler F.J., and Crouch S.R., Principles of instrumental analysis. 2017: Cengage learning.
14. Lax M., The Franck‐Condon principle and its application to crystals. The Journal of Chemical Physics, 1952. 20(11): p. 1752-1760.
15. Beck S., Hallam A., and North A.M., Excimer and charge-transfer complex trapping of excitons in carbazole containing polymers. Polymer, 1979. 20(10): p. 1177-1179.
16. Yip W.T. and Levy D.H., Excimer/exciplex formation in van der Waals dimers of aromatic molecules. Journal of Physical Chemistry, 1996. 100(28): p. 11539-11545.
17. Guillet J., Polymer photophysics and photochemistry. 1985.
18. Kafafi Z.H., Organic electroluminescence. 2005: CRC press.
19. May V. and Kühn O., Charge and energy transfer dynamics in molecular systems, 2nd. ISBN 3-527-40396-5. Wiley-VCH, February 2004.: p. 490.
20. L.T. Corporation, fluorescence resonance energy transfer (fret)-note 1.2.
21. 陳信宏、陳雲, 中工高雄會刊, 2006. 第3期: P. 72.
22. 葉昆明、陳雲, 科學發展, 2005. 第385期: P. 58.
23. 黃孝文、陳雲, 化工資訊月刊, ;. 第3期: P. 8.
24. Walzer K., Maennig B., Pfeiffer M., and Leo K., Highly efficient organic devices based on electrically doped transport layers. Chemical reviews, 2007. 107(4): p. 1233-1271.
25. Baldo M.A., Thompson M.E., and Forrest S.R., High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000. 403(6771): p. 750-753.
26. Wu C.C., Sturm J.C., Register R.A., Tian J., Dana E.P., and Thompson M.E., Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1269-1281.
27. Malliaras G.G., Salem J.R., Brock P.J., and Scott C., Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414.
28. Segura J.L., The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
29. Malliaras G. and Scott J., The roles of injection and mobility in organic light emitting diodes. Journal of applied physics, 1998. 83(10): p. 5399-5403.
30. Martin E.H. and Hirsch J., Determination of carrier mobility in plastics by a time-of-flight method. Solid State Communications, 1969. 7(10): p. 783-+.
31. Babel A. and Jenekhe S.A., High electron mobility in ladder polymer field-effect transistors. Journal of the American Chemical Society, 2003. 125(45): p. 13656-13657.
32. Horowitz G., Organic field-effect transistors. Advanced materials, 1998. 10(5): p. 365-377.
33. Kepler R., Charge carrier production and mobility in anthracene crystals. Physical Review, 1960. 119(4): p. 1226.
34. Jenekhe S.A. and Yi S., Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77(17): p. 2635-2637.
35. Zhang X. and Jenekhe S.A., Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000. 33(6): p. 2069-2082.
36. Chen D., Han L., Chen W., Zhang Z., Zhang S., Yang B., Zhang Z., Zhang J., and Wang Y., Bis (2-(benzo [d] thiazol-2-yl)-5-fluorophenolate) beryllium: A high-performance electron transport material for phosphorescent organic light-emitting devices. RSC Advances, 2016. 6(6): p. 5008-5015.
37. Nakayama K.-I., Yokoyama M., Pu Y.-J., and Kido J., Organic field-effect transistors using hetero-layered structure with OLED materials, in Organic light emitting diode-material, process and devices. 2011, InTech.
38. Li J., Liu J., Gao C., Zhang J., and Sun H., Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films. International Journal of Photoenergy, 2009.
39. Coakley K.M. and Mcgehee M.D., Conjugated polymer photovoltaic cells. Chemistry of materials, 2004. 16(23): p. 4533-4542.
40. Yang Y. and Heeger A., A new architecture for polymer transistors. Nature, 1994. 372(6504): p. 344.
41. Roncali J., Conjugated poly (thiophenes): Synthesis, functionalization, and applications. Chemical Reviews, 1992. 92(4): p. 711-738.
42. Gustafsson G., Cao Y., Treacy G., Klavetter F., Colaneri N., and Heeger A., Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992. 357(6378): p. 477.
43. Choi M.-C., Kim Y., and Ha C.-S., Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
44. Heeger A.J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie International Edition, 2001. 40(14): p. 2591-2611.
45. Tadayyon S., Grandin H., Griffiths K., Norton P., Aziz H., and Popovic Z., CuPc buffer layer role in oled performance: A study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
46. Grozea D., Turak A., Yuan Y., Han S., Lu Z., and Kim W., Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of applied physics, 2007. 101(3): p. 033522.
47. Forsythe E., Abkowitz M., and Gao Y., Tuning the carrier injection efficiency for organic light-emitting diodes. The Journal of Physical Chemistry B, 2000. 104(16): p. 3948-3952.
48. Wohlgenannt M., Tandon K., Mazumdar S., Ramasesha S., and Vardeny Z., Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature, 2001. 409(6819): p. 494.
49. Lee T.W., Noh T., Shin H.W., Kwon O., Park J.J., Choi B.K., Kim M.S., Shin D.W., and Kim Y.R., Characteristics of solution‐processed small‐molecule organic films and light‐emitting diodes compared with their vacuum‐deposited counterparts. Advanced Functional Materials, 2009. 19(10): p. 1625-1630.
50. Gao H., Qin C., Zhang H., Wu S., Su Z.-M., and Wang Y., Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. The Journal of Physical Chemistry A, 2008. 112(38): p. 9097-9103.
51. Lin W.-C., Lin H.-W., Mondal E., and Wong K.-T., Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015. 17: p. 1-8.
52. Adamovich V.I., Cordero S.R., Djurovich P.I., Tamayo A., Thompson M.E., D’andrade B.W., and Forrest S.R., New charge-carrier blocking materials for high efficiency OLEDs. Organic electronics, 2003. 4(2-3): p. 77-87.
53. Huang F., Wu H., and Cao Y., Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010. 39(7): p. 2500-2521.
54. Wu C.-L., Lin C.-Y., and Chen Y., Fabrication of efficient polymer light-emitting diodes using water/alcohol soluble poly (vinyl alcohol) doped with alkali metal salts as electron-injection layer. Journal of materials science, 2016. 51(15): p. 7286-7299.
55. Ma W., Iyer P.K., Gong X., Liu B., Moses D., Bazan G.C., and Heeger A.J., Water/methanol‐soluble conjugated copolymer as an electron‐transport layer in polymer light‐emitting diodes. Advanced Materials, 2005. 17(3): p. 274-277.
56. Gao Z., Huang R., Lin Y., Zheng Y., Liu Y., and Wei B., Reduced turn-on voltage and improved efficiency with free interfacial energy barrier in organic light-emitting diodes. Synthetic Metals, 2015. 207: p. 26-30.
57. Cho Y.J., Yook K.S., and Lee J.Y., A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Advanced Materials, 2014. 26(24): p. 4050-4055.
58. Zin W.M. and Khairul W.M., Novel conjugated schiff-base compounds. 2004, Durham University.
59. Iwan A., Schab-Balcerzak E., Grucela-Zajac M., and Skorka L., Structural characterization, absorption and photoluminescence study of symmetrical azomethines with long aliphatic chains. Journal of Molecular Structure, 2014. 1058: p. 130-135.
60. Sęk D., Lapkowski M., Dudek H., Karoń K., Janeczek H., and Jarząbek B., Optical and electrochemical properties of three-dimensional conjugated triphenylamine-azomethine molecules. Synthetic Metals, 2012. 162(11-12): p. 1046-1051.
61. Jeevadason A.W., Murugavel K.K., and Neelakantan M., Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renewable and Sustainable Energy Reviews, 2014. 36: p. 220-227.
62. Sek D., Grucela-Zajac M., Krompiec M., Janeczek H., and Schab-Balcerzak E., New glass forming triarylamine based azomethines as a hole transport materials: Thermal, optical and electrochemical properties. Optical Materials, 2012. 34(8): p. 1333-1346.
63. Petrus M., Bouwer R., Lafont U., Athanasopoulos S., Greenham N., and Dingemans T., Small-molecule azomethines: Organic photovoltaics via Schiff base condensation chemistry. Journal of Materials Chemistry A, 2014. 2(25): p. 9474-9477.
64. Soderberg T., Organic chemistry with a biological emphasis. 2016.
65. Abu-Dief A.M. and Mohamed I.M., A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef university journal of basic and applied sciences, 2015. 4(2): p. 119-133.
66. Zhou L., Kwong C.L., Kwok C.C., Cheng G., Zhang H., and Che C.M., Efficient red electroluminescent devices with sterically hindered phosphorescent platinum (II) Schiff base complexes and iridium complex codopant. Chemistry–An Asian Journal, 2014. 9(10): p. 2984-2994.
67. Che C.M., Kwok C.C., Lai S.W., Rausch A.F., Finkenzeller W.J., Zhu N., and Yersin H., Photophysical properties and OLED applications of phosphorescent platinum (II) Schiff base complexes. Chemistry-A European Journal, 2010. 16(1): p. 233-247.
68. Nishal V., Singh D., Kumar A., Tanwar V., Singh I., Srivastava R., and Kadyan P.S., A new zinc–Schiff base complex as an electroluminescent material. Journal of Organic Semiconductors, 2014. 2(1): p. 15-20.
69. Wang L., Jiao S., Zhang W., Liu Y., and Yu G., Synthesis, structure, optoelectronic properties of novel zinc Schiff-base complexes. Chinese Science Bulletin, 2013. 58(22): p. 2733-2740.
70. Sánchez C., Bèrnede J., Cattin L., Makha M., and Gatica N., Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells. Thin Solid Films, 2014. 562: p. 495-500.
71. Sek D., Siwy M., Grucela M., Małecki G., Nowak E.M., Lewinska G., Santera J., Laba K., Lapkowski M., and Kotowicz S., New anthracene-based Schiff bases: Theoretical and experimental investigations of photophysical and electrochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 175: p. 24-35.
72. Kathirgamanathan P., Surendrakumar S., Antipan-Lara J., Ravichandran S., Chan Y., Arkley V., Ganeshamurugan S., Kumaraverl M., Paramswara G., and Partheepan A., Novel lithium Schiff-base cluster complexes as electron injectors: Synthesis, crystal structure, thin film characterisation and their performance in OLEDs. Journal of Materials Chemistry, 2012. 22(13): p. 6104-6116.
73. Miyaura N. and Suzuki A., Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, Chemical Communications, 1979(19): p. 866-867.
74. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
75. Hsieh B.Y., Yeh K.M., and Chen Y., Synthesis of electroluminescent copoly (aryl ether) s containing alternate 1, 4‐distyrylbenzene derivatives and aromatic 1, 3, 4‐oxadiazole or 3, 3 ″‐terphenyldicarbonitrile segments. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(21): p. 5009-5022.
76. Zaltariov M.F., Cazacu M., Racles C., Musteata V., Vlad A., and Airinei A., Metallopolymers based on a polyazomethine ligand containing rigid oxadiazole and flexible tetramethyldisiloxane units. Journal of Applied Polymer Science, 2015. 132(11).
77. Damaceanu M.D., Constantin C.P., and Marin L., Insights into the effect of donor-acceptor strength modulation on physical properties of phenoxazine-based imine dyes. Dyes and Pigments, 2016. 134: p. 382-396.
78. Liu Z.C., Li Y.X., Ding Y.J., Yang Z.Y., Wang B.D., Li Y., Li T.R., Luo W., Zhu W.P., Xie J.P., and Wang C.J., Water-soluble and highly selective fluorescent sensor from naphthol aldehyde-tris derivate for aluminium ion detection. Sensors and Actuators B-Chemical, 2014. 197: p. 200-205.
79. Zhao Y.Y., Zhang G.Y., Liu Z., Guo C.X., Peng C.N., Pei M.S., and Li P., Benzimidazo 2,1-a benz de isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+. Journal of Photochemistry and Photobiology a-Chemistry, 2016. 314: p. 52-59.
80. Alemu D., Wei H.Y., Ho K.C., and Chu C.W., Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science, 2012. 5(11): p. 9662-9671.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw