進階搜尋


下載電子全文  
系統識別號 U0026-2407201810171300
論文名稱(中文) 應用近紅外光譜於Theta脈衝電刺激中風病患主要動作皮質區
論文名稱(英文) Near Infrared Spectroscopy Study of Theta Burst Stimulation Effect over Primary Motor Cortex of Stroke Patients
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳建安
研究生(英文) Chien-An Chen
學號 p86044132
學位類別 碩士
語文別 英文
論文頁數 42頁
口試委員 指導教授-陳家進
口試委員-曲桐
口試委員-林宙晴
口試委員-蕭富仁
中文關鍵字 中風  踩車  近紅外光譜  經顱電刺激  Theta振發式刺激  神經可塑性 
英文關鍵字 Stroke  Cycling  fNIRS  transcranial stimulation  theta burst simulation  neural plasticity 
學科別分類
中文摘要 基於神經可塑性的理論,大腦可以隨著神經迴路的重建而補償原本受傷區域的功能,透過外在的神經刺激方法以促進或改善中風後患者神經系統的修復為目前研究的趨勢。臨床研究上常用的神經刺激手段為重複性經顱磁刺激(rTMS)、Theta振發式刺激(TBS),以及經顱直流電刺激(tDCS)等方式,過去研究發現這些方式都能對神經的活性產生調控並且在運動以及認知功能方面的改善,然而同時使用兩種不同的刺激模式對於神經活性的調控在過去較少被討論到。在這個研究中秉棄了傳統經顱電刺激所使用的海綿電極,而使用腦波圖電極大小之電極,除了能夠提供較為集中以及彈性的刺激範圍以外,也能夠符合用來觀測大腦活動變化的功能性近紅外光譜儀所使用的頭套標準,建立一個同時刺激以及觀察大腦皮質活性變化的工具。
本研究使用功能性近紅外光譜造影技術(fNIRS),透過光學的方法量測帶氧以及非帶氧之血紅素濃度變化,進而利用血液動路學方法推測腦部活動的程度,與功能性磁振造影所觀測血氧濃度相依對比(BOLD)類似。此研究招募中風病患進行大腦皮質Theta振發電刺激對於大腦活動程度影響,受試者利用踩車運動來誘發大腦皮質的活動,並且利用功能性近紅外光譜觀察刺激時以及刺激前後之中風病患大腦活性變化以及運動學量測。在電刺激的階段,此研究使用Theta振發刺激以及直流刺激的合併刺激方法,刺激時間持續將近七分鐘。血液動力反應在時域以及頻域的分析應用於功能性近紅外光譜於大腦活動的訊號,而運動學的量測使用股四頭肌之表面肌電圖分析患側以及健側之形狀對稱指數(SSI)以及面積對稱指數(ASI),踩車活動時的力矩以及速度也被納入踩車順暢度的比較。
在功能性近紅外光譜對於大腦活動表現的結果顯示,在刺激當下血流震盪的能量頻譜在I區域(0.01~0.02赫茲)減少,而在II區域(0.02~0.05赫茲)以及III區域(0.05~0.15赫茲)增加,並且在刺激後進行踩車運動測試時也有觀察到類似的現象,這代表大腦可能有對這個研究所使用的刺激技術產生反應。且在刺激之後初級運動皮質區(PMC)、感覺運動皮質區(SMC)以及次級感覺皮質區(S2)之帶氧血紅素濃度皆有提升。形狀對稱指數以及面積對稱指數在健康受試者以及中風受試者中呈現明顯的差異,但在中風受試者接受刺激前後並沒有太大的差異。
合併兩種腦部刺激模式於電刺激方法的優點是可以合併功能性近紅外光造影同時觀察腦部活動對於刺激的反應,雖然仍須釐清此種刺激方法對於血液震盪頻譜的影響,但合併兩種不同刺激方法於大腦表面的電刺激方式是有潛力可以利用在其他神經退化性疾病上。
英文摘要 According to the theory of neural plasticity, brain can compensate the impaired function by rebuilding the neural circuit. As the result, many researchers tried to use external stimulation methods to modulate the neural activities to enhance or improve the brain recovery after stroke. Repetitive transcranial magnetic stimulation (rTMS), theta burst stimulation (TBS), and transcranial direct current stimulation (tDCS) are the common techniques that used to modulate the neural activities in clinical studies. The aim of this study is to apply patterned stimuli and to monitor hymodynamic changes in the brain. The EEG-liked electrode is replaced of the conventional sponge electrode for cortical electrical stimulation, which not only provides a more flexible stimulation arrangement at focused area but also fits in the headset of monitoring of hymodynamic changes.
Functional near infrared spectroscopy (fNIRS) is adopted in this study which uses the optical method to measure the concentration changes of hemoglobin representing the brain activities similar to the BOLD effect of fMRI. Stroke subjects were recruited for investigating the effect of cortical intermittent TBS (iTBS) electrical stimulation. Stroke subjects were asked to perform the cycling tasks to induce the cortical activation. During cycling, brain hemodynamic activity and kinematic information were measured before and after the stimulation. A concurrent stimulation with iTBS1200 and direct current was delivered during the stimulation session for a session of about 7 minutes. fNIRS signal was analyzed as the hemodynamic response function as concentration changes in hemoglobin in time domain and frequency domain. For kinematic information, the surface EMG on quadriceps muscles were for analyzing the symmetry between affected and unaffected leg using the shape symmetry index (SSI) and area symmetry index (ASI), and torque and speed information of ergometer to obtain the smoothness.
Our NIRS data show the decreasing value in power spectrum density band I(0.01Hz~0.02Hz), and increasing in band II(0.02Hz~0.05Hz) and band III(0.05Hz~0.15Hz) during the stimulation which suggest the brain might respond to the stimulation. Moreover, similar changes in frequency bands changes were observed in the active cycling session after stimulation. The enhanced regional brain activation value also found in primary motor cortex (PMC), sensorimotor cortex (SMC), and secondary sensory cortex (S2). The symmetry indices of SSI and ASI are significant different between healthy and stroke subjects. However, SSI and ASI did not show the significant difference before and after the stimulation. The advantage of the stimulation technique used in this study is the highly flexibility and compatibility with the functional brain activity monitor techniques like fNIRS. Although the stimulation effects to blood flow oscillation bands still need to be clarified, it is a potential stimulation technique for neural degeneration diseaseses.
論文目次 摘要 I
Abstract III
誌謝 V
Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Non-invasive brain stimulations of stroke 2
1.2.1 Theta burst stimulation (TBS) 3
1.2.2 Transcranial direct current stimulation (tDCS) 4
1.3 Electrical cortical stimulation with TBS protocol 6
1.4 Near-Infrared Spectroscopy (NIRS) for brain activity monitoring 8
1.5 Motivations and the aims of this study 10
Chapter 2 Materials and methods 11
2.1 Intermittent TBS form of electrical stimulation 11
2.1.1 Stimulation protocols 11
2.1.2 Holders for electrical stimulation electrodes 12
2.2 fNIRS measurement 13
2.2.1 fNIRS setup 13
2.2.2 fNIRS data analysis 14
2.2.3 Power spectrum density estimation of fNIRS 16
2.3 Kinematic measurement 16
2.3.1 Hardware implementation 16
2.3.2 EMG signal processing 17
2.3.3 Symmetry analysis 18
2.3.4 Roughness index 19
2.4 Subjects recruitment 20
2.5 Experimental design 20
Chapter 3 Results 22
3.1 Verification of constant current stimulator 22
3.1.1 Electrical stimulation linearity validation 22
3.2 Subject recruitment 23
3.3 Motion related cortical activities 25
3.3.1 Hemodynamic response during stimulation 25
3.3.2 Motor related cortical activities during cycling 27
3.4 Cycling performance 31
3.4.1 Symmetry index 32
3.4.2 Roughness index 35
Chapter 4 Discussion and Conclusion 36
4.1 Hemodynamic response during stimulation 36
4.2 Hemodynamic Response during Active Cycling 36
4.3 Kinematical evaluation of cycling performance 37
4.4 Surface electrical brain stimulation 38
4.5 Conclusion 39
References 40

參考文獻 1. Peng, C.-W., Review: Clinical Benefits of Functional Electrical Stimulation. Cycling Exercise for Subjects with Central. Neurological Impairments. Journal of Medical and Biological Engineering, 2011. 31(1).
2. Weingarden, H. and H. Ring, Functional electrical stimulation-induced neural changes and recovery after stroke. Eura Medicophys, 2006. 42(2): p. 87-90.
3. Fregni, F. and A. Pascual-Leone, Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol, 2007. 3(7): p. 383-93.
4. Griffin, L., et al., Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol, 2009. 19(4): p. 614-22.
5. Hatem, S.M., et al., Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci, 2016. 10: p. 442.
6. Dayan, E., et al., Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci, 2013. 16(7): p. 838-44.
7. Schulz, R., C. Gerloff, and F.C. Hummel, Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 2013. 64: p. 579-87.
8. Ackerley, S.J., et al., Combining theta burst stimulation with training after subcortical stroke. Stroke, 2010. 41(7): p. 1568-72.
9. Hoogendam, J.M., G.M. Ramakers, and V. Di Lazzaro, Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul, 2010. 3(2): p. 95-118.
10. Suppa, A., et al., Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul, 2016. 9(3): p. 323-335.
11. Huang, Y.Z., et al., Theta burst stimulation of the human motor cortex. Neuron, 2005. 45(2): p. 201-6.
12. Talelli, P., R.J. Greenwood, and J.C. Rothwell, Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol, 2007. 118(2): p. 333-42.
13. Filmer, H.L., P.E. Dux, and J.B. Mattingley, Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci, 2014. 37(12): p. 742-53.
14. Stagg, C.J. and H. Johansen-Berg, Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Hum Neurosci, 2013. 7: p. 857.
15. Butts, R.J., M.B. Kolar, and R.D. Newman-Norlund, Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation. Front Hum Neurosci, 2014. 8: p. 451.
16. Villamar, M.F., et al., Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). J Vis Exp, 2013(77): p. e50309.
17. Tsung Hsun Hsieh, et al., Novel use of theta burst cortical electrical stimulation for modulating motor plasticity in rats. Journal of Medical and Biological Engineering, 2015. 35(1): p. 62-68.
18. Hasan, A., et al., Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex. Exp Brain Res, 2012. 217(1): p. 15-23.
19. Datta, A., et al., Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J Neural Eng, 2013. 10(3): p. 036018.
20. Miyai, I., et al., Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage, 2001. 14(5): p. 1186-92.
21. Miyai, I., et al., Longitudinal optical imaging study for locomotor recovery after stroke. Stroke, 2003. 34(12): p. 2866-70.
22. Soderstrom, T., et al., Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol, 2003. 284(5): p. H1638-46.
23. Lin, P.Y., S.I. Lin, and J.J. Chen, Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. IEEE Trans Neural Syst Rehabil Eng, 2012. 20(1): p. 78-84.
24. Bikson, M., A. Datta, and M. Elwassif, Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol, 2009. 120(6): p. 1033-4.
25. Kvernmo, H.D., et al., Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvasc Res, 1999. 57(3): p. 298-309.
26. Stauss, H.M., et al., Frequency response characteristics of sympathetically mediated vasomotor waves in humans. Am J Physiol, 1998. 274(4 Pt 2): p. H1277-83.
27. Stein, C., et al., Effects of Electrical Stimulation in Spastic Muscles After Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stroke, 2015. 46(8): p. 2197-205.
28. Lopez-Alonso, V., B. Cheeran, and M. Fernandez-del-Olmo, Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning. Brain Stimul, 2015. 8(6): p. 1209-19.
29. Tremblay, S., et al., Modulation of iTBS after-effects via concurrent directional TDCS: A proof of principle study. Brain Stimul, 2017. 10(4): p. 744-747.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw