進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201715342200
論文名稱(中文) 退火處理對於氧化銦鎵鋅(IGZO)/鈦(Ti)/石墨烯(Graphene)/聚醯亞胺(Polyimide)組合式薄膜之顯微結構及光電特性之研究
論文名稱(英文) Effect of Annealing Treatment on Thin Film Microstructure, Electrical and Optical Properties in the Indium Gallium Zinc Oxide/Titanium/Graphene/Polyimide Composite Films
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 謝坤晉
研究生(英文) Kun-Chin Hsieh
學號 N16044161
學位類別 碩士
語文別 中文
論文頁數 142頁
口試委員 指導教授-林仁輝
口試委員-李澤昌
口試委員-李榮宗
口試委員-林成利
中文關鍵字 氧化銦鎵鋅  石墨烯  退火處理  氧空缺  殘留應力   
英文關鍵字 IGZO  graphene  annealing  oxygen vacancies  residual stress  titanium 
學科別分類
中文摘要 氧化銦鎵鋅(IGZO)具有優良的電及光電特性,加上可見光之寬能隙值及高透明度是目前螢幕面板領域中最被看好的薄膜材料,本研究擬添加石墨烯來增強其性質,並期望藉由退火處理,能消弭薄膜內部殘留應力,改善其性質。
本論文利用化學氣相沈積法成長出高品質之石墨烯。首先探討石墨烯的電性、拉曼光譜分析以及內部結構缺陷的檢測,經過長時間的參數測試,成功長出高品質單層石墨烯。再使用轉印方法,將石墨烯轉印在聚醯亞胺(Polyimide, PI)基板上,接著使用磁控濺鍍的方式將鈦(Ti)與氧化銦鎵鋅(IGZO)沉積在石墨烯上,形成複合材料之堆疊。
本實驗利用四點探針與霍爾效應分析儀量測薄膜之電性,比較有無添加石墨烯之樣品,結果顯示有添加石墨烯樣品之片電阻值低於無添加石墨烯之樣品10倍以上,效果十分顯著。除此之外,載子遷移率也有明顯上升,量測結果顯示添加石墨烯會使薄膜之載子遷移率提升30~60%。接著利用奈米壓痕試驗機比較兩者之硬度,發現添加石墨烯能使整體硬度大幅提升,約上升了60%。
殘留應力(Residual Stress)與氧空缺比率(IRO2)是影響薄膜材料的機械、光學及電學性質的重要因子。本實驗比較常溫25oC與退火100oC、200oC、300oC各一小時之樣品氧空缺含量。發現當退火溫度增加時,IRO2隨之增加,同時內部的殘留應力也會隨著退火處理而被釋放。氧空缺的增加與殘留應力的減少將會大幅度地改善薄膜電性,使載子遷移率上升與電阻率下降。
本研究發現添加一層Ti有助於增加整體薄膜之電性與層與層之間的附著性。透過穿透式電子顯微鏡(TEM)與能量分散光譜儀(EDS)分析發現當退火時IGZO內部的氧離子會掙脫與In、Ga、Zn之間的束縛,與Ti形成鍵結。並透過退火處理後增加Ti的結晶性,使電性加強。退火處理同時也會影響薄膜之透光率。當退火溫度增加時,薄膜之結晶性變強,晶格排列更加整齊。當光照射時會減少光之散射,使透光率增加。
英文摘要 This thesis use CVD method to create high quality graphene. First, we investigate graphene quality by Raman Analysis, Four-Point Probe and microstructure analyses. After a long test, we have made a high quality single-layer graphene successfully, and use the wetting transfer method to transfer this graphene to polyimide substrate. At last, depositing Ti and IGZO on graphene/polyimide to prepare a composite film by Magnetron Sputter.
The results show that the sheet resistance of the samples with the graphene film is 10 times lower than that the samples without graphene. In addition, the carrier mobility also increased significantly, the results show that the use of graphene will elevate the carrier mobility by 30 to 60%. The application of nano-indentation system was found that the deposition of graphene can make a substantial rise in overall hardness about 60%.
In this experiment, the oxygen content of samples was measured at room temperature and 100 ℃, 200 ℃ and 300 ℃ for 1 hour. It was found the IRO2 increased and internal residual stress was lower by increasing the annealing temperature. The increase of oxygen vacancies and the decrease of residual stress can improve the electrical properties of the film greatly. The carrier mobility of the film increases and the resistivity of the film decreases significantly.
The results show that the addition of a layer of titanium increases the electrical properties of the thin film and the adhesion between the IGZO layer and the PI substrate and improve the electrical properties of IGZO. Besides, Annealing treatment affects the transmittance of the film. When the annealing temperature increases, the crystallinity of the film becomes stronger and the lattice arrangement is neater.
論文目次 摘要 I
Extended Abstract III
致謝 VI
目錄 VII
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 8
1.4 研究架構 9
第二章 基本理論 10
2.1 IGZO介紹 10
2.1.1 晶體結構 10
2.1.2 光學性質 11
2.1.3 導電性質 11
2.2 載子濃度、載子遷移率及電阻率之關係 13
2.3 石墨烯介紹 14
2.4 石墨烯基本性質 15
2.4.1 光學性質 15
2.4.2 電學性質 15
2.4.3 力學性質 16
2.5 石墨烯的製備方法 17
2.5.1 機械剝離法 17
2.5.2 氧化還原法 17
2.5.3 化學氣相沉積法 18
2.6 殘留應力理論 19
2.6.1 殘留應力簡介 19
2.6.2 殘留應力理論分析 20
2.6.3 晶粒大小理論分析 21
2.7 鈦對於IGZO的影響 22
2.8 儀器理論 22
2.8.1 磁控濺鍍(Magnetron Sputtering)原理 22
2.8.2 拉曼量測原理 23
2.8.3 掃描式電子顯微鏡原理 24
2.8.4 穿透式電子顯微鏡原理 26
2.8.5 光學原理 27
2.8.6 四點探針原理 28
2.8.7 霍爾量測原理 29
第三章 實驗流程 43
3.1 實驗目的 43
3.2 實驗步驟 44
3.2.1 銅箔前處理 44
3.2.2 成長石墨烯 45
3.2.3 石墨烯轉印(Graphene Transfer Method) 45
3.3 實驗設備 46
3.3.1 化學濕式操作台 46
3.3.2 共濺鍍機台 48
3.3.3 拉曼光譜儀 48
3.3.4 表面粗度儀 49
3.3.5 雙束型聚交離子束 50
3.3.6 穿透式電子顯微鏡 50
3.3.7 掃描式電子顯微鏡 51
3.3.8 四點探針 51
3.3.9 霍爾效應分析儀 51
3.3.10 原子力顯微鏡 52
3.3.11 奈米壓痕試驗機 52
3.3.12 X光繞射儀 53
3.3.13 分光光譜儀 53
3.3.14 橢圓偏光儀 54
3.3.15 化學分析電子光譜儀 54
第四章 結果與討論 69
4.1 石墨烯製程分析 69
4.2 石墨烯轉印方法(Graphene Transfer Method) 70
4.3 石墨烯檢測 72
4.3.1 拉曼光譜分析 72
4.3.2 TEM分析 73
4.3.3 XPS分析 74
4.3.4 AFM分析 75
4.3.5 四點探針分析 75
4.4 IGZO結構分析 76
4.4.1 FIB分析 76
4.4.2 XRD分析 77
4.4.3 晶粒大小分析 78
4.4.4 AFM分析 78
4.4.5 殘留應力分析 79
4.4.6 奈米壓痕分析 79
4.5 IGZO成分分析 80
4.5.1 XPS分析 80
4.5.2 EDS分析 81
4.6 IGZO光學分析 82
4.6.1 透光率分析 82
4.6.2 能隙值分析 82
4.6.3 反射率分析 83
4.6.4 折射率與消光係數分析 84
4.7 IGZO電性分析 84
4.7.1 電阻分析 84
4.7.2 霍爾量測分析 85
4.8 各性質之相關性 86
第五章 結論與未來展望 131
5.1 結論 131
5.2 未來展望 132
參考文獻 134
參考文獻 [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[2] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, and M. Hirano, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4," Thin Solid Films, vol. 486, no. 1-2, pp. 38-41, 2005.
[3] K. Nomura and A. Takagi, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," The Japan Society of Applied Physics, vol. 45, no. 5B, pp. 4303-4308, 2006.
[4] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, and J.-S. Park, "High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper," Applied Physics Letters, vol. 90, no. 21, pp. 212114-212117, 2007.
[5] L. Li, L. Fan, Y. Li, Z. Song, F. Ma, and C. Liu, "Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 2, pp. 021506-021512, 2014.
[6] S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, "Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors," Thin Solid Films, vol. 519, no. 15, pp. 5146-5149, 2011.
[7] D. Kim, C. Y. Koo, K. Song, Y. Jeong, and J. Moon, "Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors," Applied Physics Letters, vol. 95, no. 10, pp. 103501-103504, 2009.
[8] N. H. Tran Nguyen, T. H. Nguyen, Y. R. Liu, M. Aminzare, A. T. Pham, and S. Cho, "Thermoelectric properties of indium and gallium dually doped ZnO thin films," ACS Appl Mater Interfaces, vol. 8, no. 49, pp. 33916-33923, Dec 14 2016.
[9] K.-H. Choi and H.-K. Kim, "Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors," Applied Physics Letters, vol. 102, no. 5, pp. 052103-052107, 2013.
[10] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, "Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals," Applied Physics Letters, vol. 70, no. 26, pp. 3561-3563, 1997.
[11] V. Srikant and D. R. Clarke, "On the optical band gap of zinc oxide," Journal of Applied Physics, vol. 83, no. 10, pp. 5447-5451, 1998.
[12] P. D. C. King, T. D. Veal, F. Fuchs, C. Y. Wang, D. J. Payne, and A. Bourlange, "Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedralIn2O3," Physical Review B, vol. 79, no. 20, pp. 205211-205220, 2009.
[13]K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, "Comparison of ultraviolet photo-field rffects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors," Japanese Journal of Applied Physics, vol. 48, no. 1, pp. 010203-010205, 2009.
[14] Y. Jianke et al., "Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy," IEEE Transactions on Electron Devices, vol. 58, no. 4, pp. 1121-1126, 2011.
[15] W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, and J.-H. Lin, "Oxygen-dependent instability and annealing/passivation effects in amorphous In-Ga-Zn-O thin-film transistors," IEEE Electron Device Letters, vol. 32, no. 11, pp. 1552-1554, 2011.
[16] K. S. Novoselov and A. K. Geim, "Electric field rffect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[17] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, and K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, no. 7230, pp. 706-710, Feb 5 2009.
[18] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, and T. J. Booth, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, no. 5881, p. 1308, 2008.
[19] J. Tian, B. Hu, Z. Wei, Y. Jin, Z. Luo, and M. Xia, "Surface structure deduced differences of copper foil and film for graphene CVD growth," Applied Surface Science, vol. 300, pp. 73-79, 2014.
[20] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, and F. Mauri, "Raman spectrum of graphene and graphene layers," Phys Rev Lett, vol. 97, no. 18, p. 187401, Nov 03 2006.
[21] Z. Tu, Z. Liu, and Y. Li, "Controllable growth of 1–7 layers of graphene by chemical vapour deposition," Carbon, vol. 73, pp. 252-258, 2014.
[22] W. Xueshen, L. Jinjin, Z. Qing, Z. Yuan, Z. Mengke, and L. Yonggang, "Controlled synthesis of single-crystalline graphene," AIP Advances, vol. 4, no. 3, p. 031314, 2014.
[23] L. G. De Arco, Z. Yi, A. Kumar, and Z. Chongwu, "Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition," IEEE Transactions on Nanotechnology, vol. 8, no. 2, pp. 135-138, 2009.
[24] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, and V. Bulovic, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett, vol. 1, pp. 30-35, 2009.
[25] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, "Graphene annealing: how clean can it be?," Nano Lett, vol. 12, no. 1, pp. 414-9, Jan 11 2012.
[26] S. T. Pantelides, Y. Puzyrev, L. Tsetseris, and B. Wang, "Defects and doping and their role in functionalizing graphene," MRS Bulletin, vol. 37, no. 12, pp. 1187-1194, 2012.
[27] H. Zhang, M. Zhao, X. Yang, H. Xia, X. Liu, and Y. Xia, "Diffusion and coalescence of vacancies and interstitials in graphite: A first-principles study," Diamond and Related Materials, vol. 19, no. 10, pp. 1240-1244, 2010.
[28] Y. Ahn, J. Kim, S. Ganorkar, Y.-H. Kim, and S.-I. Kim, "Thermal annealing of graphene to remove polymer residues," Materials Express, vol. 6, no. 1, pp. 69-76, 2016.
[29] J. E. Medvedeva and C. L. Hettiarachchi, "Tuning the properties of complex transparent conducting oxides role of crystal," Phys. Rev, vol. 81, pp. 1-17, 2010.
[30] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Physical Review B, vol. 75, no. 3, pp. 035212-1–035212-5, 2007.
[31] A. Sarkar, S. Ghosh, S. Chaudhuri, and A. K. Pal, "Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films," vol. 204, no. 2, pp. 255-264, 1991.
[32] B. V. Zeghbroeck, Principles Of Semiconductor Devices. University of Colorado, 2004, pp. 40-43.
[33] G. A. K and N. K. S, "The rise of graphene," Nature Master, vol. 6, pp. 183-191, 2007.
[34] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, and J. Hone, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, no. 9-10, pp. 351-355, 2008.
[35] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, and I. V. Grigorieva, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, Nov 10 2005.
[36] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, Jul 18 2008.
[37] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, and G. Evmenenko, "Preparation and characterization of graphene oxide paper," Nature, vol. 448, no. 7152, pp. 457-460, Jul 26 2007.
[38] K. L. Chopra, "Thin film phenomena". New York, NY : McGraw-Hill, 1969.
[39] 白木靖寬 and 吉田貞史, "薄膜工程學". 全華科技圖書股份有限公司, 2006.
[40] R. Cebulla, R. Wendt, and K. Ellmer, "Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties," Journal of Applied Physics, vol. 83, no. 2, pp. 1087-1095, 1998.
[41] Segmuller, A.;Murakami, M. “Analytical techniques for thin films”, Treatise Mater. Sci. Technol. 27, Academic Press, NY, p.143, 1988.
[42] Klung, H. P.; Alexander, L. E., “X-ray diffraction procedures for polycrystalline and amorphous materials”, John Wiley & Sons, NY, 1974.
[43] 郭鎧瑋, “磁控濺鍍機SOP”. 南區微系統研究中心, 2006.
[44] W.-n. Miao, X.-f. Li, Q. Zhang, L. Huang, Z.-j. Zhang, and L. Zhang, "Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature," Thin Solid Films, vol. 500, no. 1-2, pp. 70-73, 2006.
[45] J. W. Mayer and S. S. Lau, "ELECTRONIC MATERIALS SCIENCE". Macmillan, 1990, pp. 34-35.
[46] H. Fukuyama, H. Ebisawa, and Y. Wada, "Theory of Hall Effect. I " Prog. Theor. Phys. 42.3, vol. 42, no. 3, pp. 494-511, 1969.
[47] 田春林 and 李中正, "光學薄膜應力與熱膨脹係數量測之研究" (國立中央大學光電科學研究所博士論文). 2000.
[48] P.J. McNally, "Raman_Spectroscopy_Basics," Princeton. Instruments, 2012.
[49] W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, "Stimulated Raman scattering microscopy: an emerging tool for drug discovery," Chem Soc Rev, vol. 45, no. 8, pp. 2075-2089, Apr 21 2016.
[50] 成功大學微奈米中心, "SEM7001_SOP," 2009.
[51] S. N. M. Bajuri, N. H. A. Halim, M. N. M. Nor, and U. Hashim, "PMMA characterization and optimization for nano structure formation," pp. 81-83, 2005.
[52] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, and S. De, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat Nanotechnol, vol. 3, no. 9, pp. 563-568, Sep 2008.
[53] B. D. Cullity, "Elements of X-Ray Diffraction". Wesley, 1978.
[54] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, "Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors," Adv Mater, vol. 22, no. 12, pp. 1346-1350, Mar 26 2010.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-11-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw