進階搜尋


下載電子全文  
系統識別號 U0026-2407201620561900
論文名稱(中文) 應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究
論文名稱(英文) Study on Large Air-Gap Contactless Power Transfer System with Four-coil Resonator Structure
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林奕維
研究生(英文) I-Wei Lin
學號 N26031071
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 召集委員-林法正
口試委員-張簡樂仁
口試委員-高瑞棋
指導教授-李嘉猷
中文關鍵字 四線圈式共振結構  非接觸式電能傳輸  大間隙 
英文關鍵字 Four-coil resonator structure  Contactless power transfer  large air gap 
學科別分類
中文摘要 本論文針對電動車輛及搬運載具用之充電裝置,研製非接觸式電能傳輸系統,利於車輛底盤與地面平台具大間隙及水平偏移之狀態進行電能傳輸。本文應用四線圈式共振結構,透過兩組LC共振器,提升大間隙之傳輸效率,且能降低激勵電源及負載端對諧振影響性。文中使用磁場模擬軟體作常見線圈結構之磁場強度分佈模擬,且針對不同繞製方式之線圈進行模擬,並分析其優缺點,依據分析結果設計共振線圈。本研究使用緊密繞製之無間隙環形線圈結構,且饋電線圈與第一共振線圈、取電線圈與第二共振線圈採用同軸共平面結構降低以耦合結構厚度。此外,運用四線圈結構等效模型推導諧振相關參數,使共振器操作於諧振點,實現共振方式作電能傳輸之目的。最後,實驗量測結果顯示,當第一及第二共振線圈間距45 cm時效率約38%,最大輸出功率約129.8 W;水平偏移量在15 cm以內,整體系統傳輸效率尚可維持在30%以上,為偏移量0 cm時效率之72%。
英文摘要 This thesis aims to study contactless power transfer system for electric vehicles battery-charging equipment in order to make this system is beneficial to transfer power in large air gap and lateral misalignment between chassis of the vehicle and ground platform. This thesis applies four-coil resonator structure including two-sets of LC resonator, to enhance the transmission efficiency in large air gap, and then reduce the impact of resonance from excitation source and terminal load. In this thesis, we use magnetic field simulation software to analyze the intensity distribution of magnetic field of different types of coil structure. Based on those analyzed results, the coil of resonator was designed. We use spiral coil structure with no space winding. Moreover, to reduce the volume of coupling structure, the feed coil and the first resonator, the second resonator and load coil to be coaxial and in coplanar type.. After that, the resonant characteristics derived from the four-coil equivalent model, to make resonators can operate at resonant frequency, so that we could fulfill the objective to transfer power in resonance method. Finally, the experimental results show that the highest system efficiency is about 38% at coil spacing is in 45 cm, with the maximum output power is 129.8 W. When the lateral misalignment is 15 cm, the system efficiency still remain at more than 30%, comparing to the efficiency of 72% in the case of zero lateral misalignment.
論文目次 目錄
頁數
中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究動機 1
1-2 研究背景 1
1-3 研究方法 5
1-4 論文大綱 6
第二章 非接觸感應耦合原理與特性分析 7
2-1 前言 7
2-2 電磁感應原理 7
2-3 感應線圈之非理想特性 10
2-3-1 集膚效應 11
2-4 變壓器等效模型分析 12
2-4-1 鬆耦合變壓器模型 13
2-4-2 耦合係數與互感量測 14
2-5 非接觸式耦合架構種類 14

第三章 四線圈式耦合結構研製與分析 17
3-1 前言 17
3-2 耦合結構模擬與分析 17
3-2-1 共振線圈磁場模擬與分析 17
3-2-2 環形線圈磁場模擬與分析 20
3-3 諧振電路分析 23
3-4 四線圈式共振結構等效模型分析 25
3-4-1 反射阻抗與諧振電容分析 25
3-4-2 耦合結構傳輸效率分析 30
3-5 四線圈式耦合結構研製與分析 32
3-5-1 四線圈式耦合結構研製 32
3-5-2 四線圈式耦合結構分析 34
第四章 非接觸式電能傳輸系統電路 37
4-1 前言 37
4-2 整體系統電路架構 37
4-3 初級側電路架構 38
4-3-1 全橋變流器驅動電路 38
4-3-2 全橋變流器 40
4-4 次級側電路架構 43
4-5 四線圈式非接觸電能傳輸系統設計流程 44
第五章 系統模擬與實驗結果 47
5-1 前言 47
5-2 SIMPLIS電路模擬 47
5-3 四線圈式共振結構參數與電路規格 49
5-4 系統實驗結果與波形量測 50
第六章 結論與未來研究方向 59
6-1 結論 59
6-2 未來研究方向 60
參考文獻 61















表目錄
頁數
表3-1 四線圈式非接觸電能傳輸之共振線圈模擬參數 18
表3-2 環形線圈結構模擬參數 20
表3-3 等效反射阻抗推導結果 30
表3-4 諧振電容推導結果 30
表3-5 線材規格 33
表3-6 饋電線圈與取電線圈繞製參數 33
表3-7 第一共振線圈與第二共振線圈繞製參數 34
表3-8 四線耦合結構線圈參數 35
表5-1 模擬參數與系統規格 58
表5-2 系統電路元件規格 60
表5-3 實際四線圈耦合結構參數 60








圖目錄
頁數
圖1-1 非接觸式電能傳輸應用 3
圖1-2 大間距之非接觸式電能傳輸系統 4
圖2-1 安培右手定律 7
圖2-2 環形線圈磁場示意圖 8
圖2-3 環形線圈不同半徑下距離對磁場之關係圖 9
圖2-4 電磁感應示意圖 10
圖2-5 集膚效應示意圖 11
圖2-6 導線內電流分佈截面圖 12
圖2-7 頻率集膚與深度關係曲線圖 12
圖2-8 變壓器耦合電路模型 13
圖2-9 變壓器T型等效模型 14
圖2-10 考慮匝數比之T型等效模型 14
圖2-11 二線圈式感應耦合架構 15
圖2-12 四線圈式共振耦合架構 16
圖2-13 四線圈式共振耦合架構示意圖 16
圖3-1 共振線圈結構圖 18
圖3-2 螺旋形線圈磁場強度模擬圖 19
圖3-3 環形線圈磁場強度模擬圖 19
圖3-4 共振器結構規格示意圖 21
圖3-5 Type A線圈磁場分佈模擬圖 21
圖3-6 Type B線圈磁場分佈模擬圖 21
圖3-7 Type C線圈磁場分佈模擬圖 22
圖3-8 Type D線圈磁場分佈模擬圖 22
圖3-9 本文耦合結構示意圖 23
圖3-10 激勵電源端諧振電路架構示意圖 24
圖3-11 串聯諧振之四線圈共振架構示意圖 25
圖3-12 四線圈式共振結構等效阻抗模型圖 25
圖3-13 Z4反射至第二共振槽等效模型圖 26
圖3-14 Z3反射至第一共振槽等效模型圖 27
圖3-15 Z2反射至饋電槽等效模型圖 29
圖3-16 四線圈式共振結構等效模型 31
圖3-17 STC cable實體圖 33
圖3-18 饋電線圈示意圖及實體圖 33
圖3-19 第一共振線圈示意圖與實體圖 34
圖3-20 品質因數對頻率之關係圖 35
圖3-21 饋電線圈頻率響應大小圖 35
圖3-22 共振線圈頻率響應大小圖 35
圖3-23 整體四線圈結構實體圖 36
圖4-1 四線圈式無線電能傳輸之整體系統架構 37
圖4-2 初級側整體電路架構 38
圖4-3 UCC3895震盪頻率曲線圖 39
圖4-4 外加電阻與怠滯時間曲線圖 39
圖4-5 IR2110與功率開關接線圖 40
圖4-6 功率開關R-D驅動電路 41
圖4-7 全橋變流器與諧振電路 41
圖4-8 全橋變流器與諧振電路波形 41
圖4-9 全橋變流器操作模式圖 43
圖4-10 橋式全波整流電路架構圖 44
圖4-11 四線圈式共振結構非接觸式電能傳輸系統設計流程圖 45
圖4-12 本文四線圈式共振結構非接觸式電能傳輸系統完整電路圖 46
圖5-1 全橋變流器與諧振電路模擬圖 47
圖5-2 全橋變流器開關驅動訊號模擬波形圖 48
圖5-3 饋電槽諧振電容跨壓 與饋電槽電流iL1模擬波形圖 49
圖5-4 第一共振電容跨壓 與第一共振槽電流iL2模擬波形圖 49
圖5-5 全橋變流器開關驅動訊號波形圖 50
圖5-6 饋電槽諧振電容跨壓 與饋電槽電流 波形圖 51
圖5-7 第一共振槽諧振電容跨壓 與第一共振槽電流iL2波形圖 51
圖5-8 第二共振槽諧振電容跨壓 與第二共振槽電流iL3波形圖 52
圖5-9 未加入整流器之負載電壓 與取電槽電流 波形圖 52
圖5-10 四線圈式非接觸電能傳輸系統架構效率量測圖 53
圖5-11 負載變動與效率關係曲線圖 53
圖5-12 水平偏移量示意圖 54
圖5-13 水平偏移量與效率關係曲線圖 54
圖5-14 固定諧振參數之間隙變動效率量測圖 55
圖5-15 最大功率輸入與輸出電壓電流波形圖 55
圖5-16 饋電線圈及取電線圈耦合示意圖 56
圖5-17 饋電線圈與取電線圈耦合實體圖 56
圖5-18 間隙變動與效率關係曲線圖 56
圖5-19 初級側電路與耦合結構實體圖 57
圖5-20 次級側電路與耦合結構實體圖 57
圖5-21 四線圈式電能傳輸系統整體實體圖 58
參考文獻 [1] S. Jeong, Y. J. Jang, and D. Kum, “Economic analysis of the dynamic charging electric vehicle,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6368-6377, Nov. 2015.
[2] A. Kamineni, G. A. Covic, and J. T. Boys, “Analysis of coplanar intermediate coil structures in inductive power transfer systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6141-6154, Nov. 2015.
[3] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasufda, “Compact contactless power transfer system for electric vehicle,” in Proc. IEEE IPEC, 2010, pp. 21-24.
[4] W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform,” in Proc. IEEE IECON, 2008, pp. 1063-1068.
[5] G. A. Covic, M. L. G. Kissin, D. Kacprzak, N. Clausen, and H. Hao, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE, 2011, pp. 1832-1838.
[6] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structure for lumped inductive power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[7] I. Fujita, T. Yamanaka, Y. Kaneko, S. Abe, and T. Yasuda, “A 10kW transformer with a novel cooling structure of a contactless power transfer system for electric vehicles,” in Proc. IEEE ECCE, 2013, pp. 3643-3650.
[8] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[9] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[10] H. Y. Shen, J. Y. Lee, and T. W. Chang, “Study of contactless inductive Charging platform with core array structure for portable products,” in Proc. IEEE CECNet, 2011, pp. 16-18.
[11] X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron. vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[12] K. Hatanaka, F. Sato, H. Matsuki, and S. Kikuchi, J. Murakami, “Power tramsfer of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, Sep. 2002.
[13] Y. D. Ko and Y. J. Jang, “The optimal system design of the online electric vehicle utilizing wireless power transmission technology,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1255-1265, Sep. 2013.
[14] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[15] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Nov. 2015.
[16] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
[17] “The wireless future of energy transfer,” Intel Co., U. S. A[Online]. Available: http//singularityhub.com/2009006/30/the-wireless-power-tran- fer/, 2009.
[18] F. Zhang, S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[19] Y. M. Zhang, Z. M. Zhao, and K. N. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Dec. 2013.
[20] R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” IEEE Trans. Magn., vol. 50. no. 11, pp. 1-4, Nov. 2014.
[21] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Oct. 2010.
[22] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[23] Z. Zhang, K. T. Ckau, C. H. Liu, F. H. Li, and T. W. Ching, “Quantitative analysis of mutual inductance for optimal wireless power transfer via magnetic resonant coupling,” IEEE Trans. Magn., vol. 50, no. 11, article 8600504, Nov. 2014.
[24] T. Duong and J. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[25] J. Park, Y. Tak, Y. G. Kim, Y. W. Kim, and S. Nam, “Investigation of adaptive matching method for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773, May 2011.
[26] Z. Dang, Y. Cao, and J. A. Abu, “Reconfigurable magnetic resonance-coupled wireless power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6057-6069, Nov. 2015.
[27] W. S. Lee, W. I. Son, K. S. Oh, and J. W. Yu,“Contactless energy transfer systems using antiparallel resonant loops, ” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 350-359, Nov. 2011.
[28] Y. L. Lyu, F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, and D. Erni, “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6097-6107, Nov. 2015.
[29] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-range wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500-4511, Sep. 2014.
[30] J. Kim, H. Son, K. Kim, and Y. Park, “Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 389-392, May 2011.
[31] D. Ahn and S. C. Hong, “A Study on magnetic field repeater in wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 360-371, Jan. 2013.
[32] Christopher J. Stevens, “Magnetoinductive waves and wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6782-6190 Nov. 2015.
[33] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[34] S. C. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric 4-coil resonator for electric vehicle battery chargers,” in Proc. IEEE APEC, 2015, pp. 15-19.
[35] H. Hwang, J. Moon, B. Lee, and C. H. Jeong, “An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement,” IEEE Trans. Consumer Electronics, vol. 60, no. 2, pp. 203-209, May 2014.
[36] N. Yin, G. Xu, Q. Yang, J. Zhao, X. Yang, J. Jin, W. Fu , and M. Sun, “Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance,” IEEE Trans. vol. 48, no.7, pp.723-726, Jan. 2012.
[37] X. Zhang, S. L. Ho, and W. N. Fu, “Analysis and optimization of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4511-4514, Nov. 2012.
[38] S. Moon, B. C. Kim, S. Y. Cho, Chi. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
[39] Z. Yan, C. Zhang, Q. Yang, Y. Li, D. Xi, Z. Wang, “Design and analysis of cuboid film resonator for wireless power transmission system based on resonant coupling,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[40] H. C. Son, J. W. Kim, Y. J. Park, and K. H. Kim, “Efficency analysis and optimal design of a circular loop resonant coil for wireless power transfer,” IEEE Asia-Pacific Micowave Conf., 2010, pp. 7-10.
[41] J. Miranda, G. Fanti, Y. Feng, K. Omanakuttan, R. Ongie, A. Setjoadi, and F. Olin, “Wireless power transfer using weakly coupled magnetostatic resonators,” in Proc. IEEE ECCE, 2010, pp. 4179-4186.
[42] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, July 2009.
[43] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 57, no. 7, pp. 536-540, Jul. 2010.
[44] L. Yongxiang, Y. Zhou, H. Xingzhe, R. Yi, and W. Yi, “Full-wave analysis of non-radiative wireless power transmission system in half space,” in Proc. IEEE GHTCE, 2012, pp. 155-158.
[45] Z. Chen, W. W. Jing, X. L. Huang, L. L. Tan, C. Chen, and W. Wang, “A promoted design for primary coil in roadway-powered system,” IEEE Trans. Magn., vol. 51, no. 11, article 8402004, Nov. 2015.
[46] M. Kiani and M. Ghovanloo, “The circult theory behind coupled-mode magnetic resonant-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 59, no. 9, pp. 2065-2074, Sep. 2012.
[47] 賴景明,應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸之研究,國立成功大學電機工程學系碩士論文,2012年。
[48] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配特性研究,國立成功大學電機工程學系碩士論文,2015年。
[49] 張雅婷,電動搬運載用用非接觸式條帶形感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
[50] 黃立宇,具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製,國立成功大學電機工程學系碩士論文,2015年。
[51] UCC3895 Data sheet, Texas Instruments Inc., 2013.
[52] IR2110 Data sheet, International Rectifier Inc., 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-12-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw