進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201617232500
論文名稱(中文) 對含亞硝基紅鹽配位基之過渡金屬錯合物於電催化二氧化碳還原活性之研究
論文名稱(英文) On the electrocatalytic activity of transition metal nitroso-R complexes towards the reduction of CO2
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 王柏升
研究生(英文) Bo-Sheng Wang
學號 N36034631
學位類別 碩士
語文別 英文
論文頁數 78頁
口試委員 指導教授-林家裕
口試委員-林正嵐
口試委員-賴怡璇
中文關鍵字 二氧化碳還原  甲醇  亞硝基紅鹽錯合物  普魯士藍 
英文關鍵字 CO2 reduction  Methanol  Nitroso-R complex  Prussian blue 
學科別分類
中文摘要 本研究主要在探討二氧化碳在四種不同表面修飾之透明導電玻璃電極與含有三種不同過渡金屬(鈷、鐵、鎳)-亞硝基錯合物之電解質的電解系統之還原行為。藉由將二氧化碳以電化學催化的方式還原成甲醇,不僅能減少在大氣中過多的氧化碳,還能解決能源短缺的問題。
四種電極包括FTO透明導電電極、普魯士藍修飾之FTO透明導電電極(FTO|PB)、白金修飾之FTO透明導電電極(FTO|Pt)以及普魯士藍修飾之FTO|Pt透明導電電極(FTO|Pt|PB)。普魯士藍之角色為電子傳遞媒介而過渡金屬(鈷、鐵、鎳)-亞硝基錯合物則為催化二氧化碳還原之電觸媒。研究結果發現,含有鈷-亞硝基錯合物之電解系統對二氧化碳還原催化活性最佳,二氧化碳在四種電極上皆可生成甲醇,其中二氧化碳在FTO|Pt|PB轉換成甲醇的法拉第效率最高接近52.83 ± 17.10%。而含有亞鐵-亞硝基錯合物之電解系統活性次之,二氧化碳還原生成甲醇之發拉第效率最高可達11.50 ± 12.14%。最後,在含有鎳-亞硝基錯合物的電解系統對於二氧化碳的還原幾乎無催化作用。這些結果與1980年代Ogura團隊的結果不甚相同。他們使用Pt|PB工作電極催化二氧化碳還原並在亞鐵-亞硝基錯合物中得到83%左右的甲醇轉化法拉第效率。相較於含有鈷-亞硝基錯合物,亞鐵-亞硝基錯合物與鎳-亞硝基錯合物的甲醇轉化法拉第效率較低的原係因為在溶液中的錯合物穩定性較低,影響催化活性,或者其他副產物的產生,但礙於氣相層析儀的管柱的靈敏度,在此研究中無法進行分析與定量。
英文摘要 In this study, the electrochemical reduction of CO2 using the electrocatalytic systems, which consists of four types of surface-modified fluorine-doped tin oxide coated glass electrodes (FTO) and three kinds of transition metal (Co2+, Ni2+, Fe2+) nitroso–R complexes was investigated. By reducing the CO2 into methanol, it can not only eliminate the excess emission of CO2 in atmosphere but also generate an alternative energy to solve both severe greenhouse effect and the energy crisis.
The four types of surface-modified FTO electrodes include bare FTO, Prussian blue modified FTO (FTO|PB), Platinum (Pt) modified FTO (FTO|Pt), and Prussian blue modified FTO|Pt (FTO|Pt|PB) electrodes. The PB thin film, prepared by electrodeposition, acts as the electron transfer mediator in this work, whereas the transition metal nitroso-R complexes was used as the electrocatalysts electrocatalyzing the electrochemical reduction of CO2. It was found that the electrocatalytic system containing cobalt nitroso-R complex showed best electrocatalytic activity towards the reduction of CO2; methanol production was noticed for all the four types of electrodes, and the maximal Faradaic efficiency of 52.83 ± 17.10% can be achieved using FTO|Pt|PB. The electrocatalyst system containing ferrous nitroso-R complex exhibited second best activity; the maximal Faradaic efficiency of 11.50 ± 12.14% can be achieved using FTO|Pt|PB. The electrocatalyst system containing nickel nitroso-R complex didn’t exhibit any activity towards the electrochemical reduction of CO2 into methanol.
These results is quite different from the previous work done by Ogura group in 1980s, in which they employ Pt|PB as the working electrode and ferrous nitroso-R complex showed the best activity to methanol production with a Faradaic efficiency of 83%. The lower or ignorable activity of electrocatalytic systems containing ferrous nitroso-R complex and nickel nitroso-R complex could be attributed to the fact that the instability of these two complexes under cathodic conditions or other byproducts, which cannot be detected and quantified using gas chromatography, formed during the electrochemical reduction of CO2.
論文目次 中文摘要 I
Abstract II
Acknowledgement IV
Table of Content V
List of Tables VIII
List of Figures IX
Chapter 1 INTRODUCTION 1
1.1 General information 1
1.2 Schemes for dealing with CO2 2
1.2.1 Carbon capture and separation 3
1.2.1.1 Carbon capture 3
1.2.1.2 Carbon separation 6
1.2.2 Carbon transportation and storage 8
1.2.3 Carbon recycle into fuel 11
1.2.3.1 Thermochemical conversion of CO2 13
1.2.3.2 Electrochemical conversion of CO2 15
1.2.3.2.1 Effects of ionic liquid on the electrochemical reduction of CO2 16
1.2.3.3 Photoelectrochemical conversion of CO2 17
1.2.4 Electrocatalysts for the electrochemical reduction of CO2 23
1.2.4.1 KOH/HF treated metallic Molybdenum 23
1.2.4.2 Pyridine 24
1.2.4.3 Prussian blue/metal complex electrocatalytic system 25
1.3 Motivation 27
Chapter 2 EXPERIMENTAL SECTION 28
2.1 Materials 28
2.2 Instrumentation 30
2.3 Material synthesis 32
2.3.1 Electrode preparation 32
2.4 Physical characterization 35
2.4.1 Scanning electron microscopy (SEM) 35
2.4.2 Raman spectroscopy 35
2.4.3 Inductively coupled plasma-mass spectroscopy (ICP) 36
2.4.4 Ultraviolet-visible spectroscopy (UV-vis) 36
2.4.5 Gas Chromatography 39
2.5 Electrochemical characterization 42
Chapter 3 RESULTS AND DISCUSSION 45
3.1 Physical characterization on the PB modified electrodes 45
3.2 Electrochemical properties of transition metal complexes 47
3.2.1 Redox behavior of cobalt nitroso-R complex (Co-NRS) on FTO 47
3.2.2 Redox behavior of Nickel (II) nitroso-R complex (Ni-NRS) 57
3.2.3 Redox behavior of ferrous nitroso-R complex (Fe-NRS) 59
3.2.4 Product analyses for CO2 reduction using Ni-NRS and Fe-NRS 61
Chapter 4 CONCLUSION AND SUGGESTION 64
4.1 Conclusion 64
4.2 Suggestion and Outlook 66
4.2.1 Activity of NRS over different electrode 66
4.2.2 Immobilization of transition metal complex 67
4.2.3 Substrate effect 67
Reference 69
Appendix 77

參考文獻 [1] M. K. Hubbert, Nuclear energy and the fossil Fuels. Houston, TX: Shell Development Company, June, 1956.
[2] P. Pall, T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, et al., Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000, Nature, 470, 382-385 (2011).
[3] P. A. Stott, D. A. Stone, and M. R. Allen, Human contribution to the European heatwave of 2003, Nature, 432, 610-614 (2004).
[4] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, Advancesn in CO2 capture technology - The US Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, 2, 9-20 (2008).
[5] P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, et al., Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy & Environmental Science, 5, 7281-7305 (2012).
[6] A. S. Bhown and B. C. Freeman, Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies, Environmental Science & Technology, 45, 8624-8632 (2011).
[7] C. Hendriks, Energy conversion: CO2 removal from coal-fired power plant, Netherlands: Kluwer Academic Publishers (1995).
[8] A. Veawab, A. Aroonwilas, and P. Tontiwachwuthikul, CO2 absorption performance of aqueous alkanolamines in packed columns, Fuel Chemistry Division Preprints, 47, 49-50 (2002).
[9] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews, 39, 426-443 (2014).
[10] M. Ishida, M. Yamamoto, and T. Ohba, Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200 °C, Energy Conversion and Management, 43, 1469-1478 (2002).
[11] J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad, and J. M. Palacios, Selection of Oxygen Carriers for Chemical-Looping Combustion, Energy & Fuels, 18, 371-377 (2004).
[12] Q. Zafar, T. Mattisson, and B. Gevert, Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping ReformingRedox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support, Industrial & Engineering Chemistry Research, 44, 3485-3496 (2005).
[13] S. A. RACKLEY, "Carbon capture and storage. Stephen A. Rackley," ed: Amsterdam: Butterworth-Heinemann: Elsevier: Butterworth-Heinemann, 2010.
[14] M. J. Tuinier, M. van Sint Annaland, G. J. Kramer, and J. A. M. Kuipers, Cryogenic capture using dynamically operated packed beds, Chemical Engineering Science, 65, 114-119 (2010).
[15] Z. X. Zhang, G. X. Wang, P. Massarotto, and V. Rudolph, Optimization of pipeline transport for CO2 sequestration, Energy Conversion and Management, 47, 702-715 (2006).
[16] A. Witkowski and M. Majkut, "Analysis of Transportation Systems for CO2 Sequestration," in Advances in Carbon Dioxide Compression and Pipeline Transportation Processes, ed Cham: Springer International Publishing, 2015, 73-93.
[17] M. Blunt, F. J. Fayers, and F. M. Orr Jr, Carbon dioxide in enhanced oil recovery, Energy Conversion and Management, 34, 1197-1204 (1993).
[18] IEA, CO2 Capture and Storage, IEA/OECD, Parris (2008).
[19] E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chemical Society Reviews, 38, 89-99 (2009).
[20] G. Centi and S. Perathoner, CO2-based energy vectors for the storage of solar energy, Greenhouse Gases: Science and Technology, 1, 21-35 (2011).
[21] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat Mater, 11, 19-29 (2012).
[22] D. N. Prater and J. J. Rusek, Energy density of a methanol/hydrogen-peroxide fuel cell, Applied Energy, 74, 135-140 (2003).
[23] J. G. Liu, T. S. Zhao, R. Chen, and C. W. Wong, The effect of methanol concentration on the performance of a passive DMFC, Electrochemistry Communications, 7, 288-294 (2005).
[24] Y. Zhu, S. Y. Ha, and R. I. Masel, High power density direct formic acid fuel cells, Journal of Power Sources, 130, 8-14 (2004).
[25] G. Thomas, Overview of storage development DOE hydrogen program, Sandia National Laboratories, 9 (2000).
[26] J. H. Awbery and E. Griffiths, The Heats of Combustion of Carbon Monoxide in Oxygen and of Nitrous Oxide in Carbon Monoxide at Constant Pressure, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 141, 1-16 (1933).
[27] Y. ODA, S. OSAFUNE, H. UEDA, and K. FUJIMURA, Clean Combustion Technology in Diesel Engines Operated with Dimethyl ether, Mitsubishi Heavy Industries Technical Review, 40 (2003).
[28] G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, and G. L. Haller, Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction, Journal of Catalysis, 249, 370-379 (2007).
[29] G. D. Weatherbee and C. H. Bartholomew, Hydrogenation of CO2 on group VIII metals, Journal of Catalysis, 87, 352-362 (1984).
[30] H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, and S. Gu, A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas, Catalysis Science & Technology, 4, 2210-2229 (2014).
[31] A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chemical Reviews, 107, 1692-1744 (2007).
[32] M. R. Rahimpour and H. Elekaei, A comparative study of combination of Fischer–Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology, Fuel Processing Technology, 90, 747-761 (2009).
[33] I. Ganesh, Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review), Renewable and Sustainable Energy Reviews, 31, 221-257 (2014).
[34] G. C. Chinchen, K. C. Waugh, and D. A. Whan, The activity and state of the copper surface in methanol synthesis catalysts, Applied Catalysis, 25, 101-107 (1986).
[35] J. S. Lee, K. H. Lee, S. Y. Lee, and Y. G. Kim, A Comparative Study of Methanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst, Journal of Catalysis, 144, 414-424 (1993).
[36] X.-M. Liu, G. Q. Lu, Z.-F. Yan, and J. Beltramini, Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO2, Industrial & Engineering Chemistry Research, 42, 6518-6530 (2003).
[37] G. J. Millar, C. H. Rochester, and K. C. Waugh, An in situ high pressure FT-IR study of CO2/H2 interactions with model ZnO/SiO2, Cu/SiO2 and Cu/ZnO/SiO2 methanol synthesis catalysts, Catalysis Letters, 14, 289-295 (1992).
[38] S. Bailey, G. F. Froment, J. W. Snoeck, and K. C. Waugh, A DRIFTS study of the morphology and surface adsorbate composition of an operating methanol synthesis catalyst, Catalysis Letters, 30, 99-111 (1994).
[39] J. Szanyi and D. W. Goodman, Methanol synthesis on a Cu(100) catalyst, Catalysis Letters, 10, 383-390 (1991).
[40] R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn, J. B. Bulko, and T. P. Kobylinski, Catalytic synthesis of methanol from COH2, Journal of Catalysis, 56, 407-429 (1979).
[41] E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell, Journal of the American Chemical Society, 130, 6342-6344 (2008).
[42] M. Halmann, PHOTOELECTROCHEMICAL REDUCTION OF AQUEOUS CARBON-DIOXIDE ON P-TYPE GALLIUM-PHOSPHIDE IN LIQUID JUNCTION SOLAR-CELLS, Nature, 275, 115-116 (1978).
[43] D. K. Zhong, S. Choi, and D. R. Gamelin, Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi" Catalyst-Modified W:BiVO4, Journal of the American Chemical Society, 133, 18370-18377 (2011).
[44] Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, et al., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Journal of Materials Research, 25, 3-16 (2010).
[45] M. S. Prevot and K. Sivula, Photoelectrochemical Tandem Cells for Solar Water Splitting, Journal of Physical Chemistry C, 117, 17879-17893 (2013).
[46] W. J. Jo, J. W. Jang, K. J. Kong, H. J. Kang, J. Y. Kim, H. Jun, et al., Phosphate Doping into Monoclinic BiVO4 for Enhanced Photoelectrochemical Water Oxidation Activity, Angewandte Chemie-International Edition, 51, 3147-3151 (2012).
[47] W. J. Luo, Z. S. Yang, Z. S. Li, J. Y. Zhang, J. G. Liu, Z. Y. Zhao, et al., Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy & Environmental Science, 4, 4046-4051 (2011).
[48] K. P. S. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, Photocatalytic and Photoelectrochemical Water Oxidation over Metal-Doped Monoclinic BiVO4 Photoanodes, Chemsuschem, 5, 1926-1934 (2012).
[49] S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy & Environmental Science, 4, 5028-5034 (2011).
[50] H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, and A. J. Bard, Factors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation, J. Phys. Chem. C, 115, 17870-17879 (2011).
[51] M. Gratzel, Photoelectrochemical cells, Nature, 414, 338-344 (2001).
[52] S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors, Angewandte Chemie International Edition, 52, 7372-7408 (2013).
[53] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Photochemical and Photoelectrochemical Reduction of CO2, Annual Review of Physical Chemistry, 63, 541-569 (2012).
[54] X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications, Chemical Reviews, 107, 2891-2959 (2007).
[55] K. W. J. Frese, S. C. Leach, and S. C. Summers, "Electrochemical reduction of aqueous carbon dioxide to methanol," 1986.
[56] E. B. Cole, P. S. Lakkaraju, D. M. Rampulla, A. J. Morris, E. Abelev, and A. B. Bocarsly, Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights, Journal of the American Chemical Society, 132, 11539-11551 (2010).
[57] G. Seshadri, C. Lin, and A. B. Bocarsly, A NEW HOMOGENEOUS ELECTROCATALYST FOR THE REDUCTION OF CARBON-DIOXIDE TO METHANOL AT LOW OVERPOTENTIAL, Journal of Electroanalytical Chemistry, 372, 145-150 (1994).
[58] K. Ogura and H. Uchida, ELECTROCATALYTIC REDUCTION OF CO2 TO METHANOL .8. PHOTOASSISTED ELECTROLYSIS AND ELECTROCHEMICAL PHOTOCELL WITH N-TiO2 ANODE, Journal of Electroanalytical Chemistry, 220, 333-337 (1987).
[59] K. Ogura and H. Uchida, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL .5. RELATIONSHIP BETWEEN THE ABILITY OF METAL-COMPLEXES TO ENGAGE IN HOMOGENEOUS CATALYSIS AND THEIR COORDINATION CHEMISTRY, Journal of the Chemical Society-Dalton Transactions, 1377-1380 (1987).
[60] K. Ogura and H. Uchida, CATALYTIC REDUCTION OF CARBON-DIOXIDE AT VARIOUS MEDIATED ELECTRODES, Journal of the Electrochemical Society, 134, C498-C498 (1987).
[61] K. Ogura and I. Yoshida, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL IN THE PRESENCE OF 1,2-DIHYDROXYBENZENE-3,5-DISULPHONATOFERRATE(III) AND ETHANOL, Journal of Molecular Catalysis, 34, 67-72 (1986).
[62] K. Ogura and K. Takamagari, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL .2. EFFECTS OF METAL-COMPLEX AND PRIMARY ALCOHOL, Journal of the Chemical Society-Dalton Transactions, 1519-1523 (1986).
[63] K. Ogura and M. Takagi, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL .3. USE OF AN ELECTROCHEMICAL PHOTOCELL, Journal of Electroanalytical Chemistry, 201, 359-365 (1986).
[64] K. Ogura and M. Takagi, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL .4. ASSESSMENT OF THE CURRENT POTENTIAL CURVES LEADING TO REDUCTION, Journal of Electroanalytical Chemistry, 206, 209-216 (1986).
[65] K. Ogura, MEDIATED REDUCTION OF CO AND CO2 TO METHANOL BY SURFACE-CONFINED METAL-COMPLEXES IN THE PRESENCE OF HOMOGENEOUS CATALYSTS, Journal of Applied Electrochemistry, 16, 732-736 (1986).
[66] K. Ogura and M. Fujita, ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO METHANOL .7. WITH QUINONE DERIVATIVES IMMOBILIZED ON PLATINUM AND STAINLESS-STEEL, Journal of Molecular Catalysis, 41, 303-311 (1987).
[67] K. Ogura and S. Yamasaki, Selective conversion of CO into methanol at ordinary temperature. Part 4. Activation by iron(II), iron(III), and chromium(III) complexes, Journal of the Chemical Society, Dalton Transactions, 2499-2504 (1985).
[68] R. L. McCreery, "Instrumentation Overview and Spectrometer Performance," in Raman Spectroscopy for Chemical Analysis, ed: John Wiley & Sons, Inc., 2005, 73-94.
[69] S. J. Hill, A. Fisher, and M. Liezers, "Plasma Generation, Ion Sampling and Focusing," in Inductively Coupled Plasma Mass Spectrometry Handbook, ed: Blackwell Publishing Ltd., 2009, 1-25.
[70] J. L. Todoli and F. Vanhaecke, "Liquid Sample Introduction and Electrothermal Vaporisation for ICP-MS: Fundamentals and Applications," in Inductively Coupled Plasma Mass Spectrometry Handbook, ed: Blackwell Publishing Ltd., 2009, 182-227.
[71] D. L. Reger, S. R. Goode, and D. W. Ball, Chemistry: principles and practice: Cengage Learning, 2009.
[72] R. Hanzlik, Inorganic aspects of biological and organic chemistry: Elsevier, 2012.
[73] S. P. Arya and M. Mahajan, Nitroso-R Salt As a Sensitive Spectrophotometric Reagent For the Determination of Vitamin C, Analytical Letters, 30, 2541-2553 (1997).
[74] T. G. Dzherayan, V. M. Shkinev, L. K. Shpigun, P. M. Kamilova, and K. E. Geckeler, Water-soluble polymers for spectrophotometric and flow injection determination of cobalt with nitroso-R-salt, Talanta, 57, 7-13 (2002).
[75] E. A. Reshetnyak, N. V. Ivchenko, and N. A. Nikitina, Photometric determination of aqueous cobalt (II), nickel (II), copper (II) and iron (III) with 1-nitroso-2-naphthol-3,6-disulfonic acid disodium salt in gelatin films, Central European Journal of Chemistry, 10, 1617-1623 (2012).
[76] H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen, Journal of Physical and Chemical Reference Data, 3, 979-1017 (1974).
[77] K. Kadoya, N. Matsunaga, and A. Nagashima, Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, Journal of Physical and Chemical Reference Data, 14, 947-970 (1985).
[78] S. Han, Y. Chen, R. Pang, P. Wan, and M. Fan, Fabrication of Prussian Blue/Multiwalled Carbon Nanotubes/Glass Carbon Electrode through Sequential Deposition, Industrial & Engineering Chemistry Research, 46, 6847-6851 (2007).
[79] R. Withnall, A. Reip, and J. Silver, "Raman Spectroscopy Gains Currency," in Infrared and Raman Spectroscopy in Forensic Science, ed: John Wiley & Sons, Ltd, 2012, 185-204.
[80] K. Ogura and M. Takagim, Electrocatalytic reduction of carbon dioxide to methanol Part IV. Assessment of the current—potential curves leading to reduction, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 206, 209-216 (1986).
[81] A. Flores, L. E. León, and A. Calvo, Cyclic Voltammetric Study of the R-Nitroso Salt Application to the Indirect Determination of Iron(II), Analytical Letters, 17, 1913-1925 (1984).
[82] T. Nomura, Alternating current polarographic determination of microgram amounts of iodide ion by means of the catalytic oxidation of 1-amino-2-naphthol-4-sulfonic acid, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 139, 97-104 (1982).
[83] K. Ogura and H. Uchida, Electrocatalytic reduction of carbon dioxide to methanol. Part 5. Relationship between the ability of metal complexes to engage in homogeneous catalysis and their co-ordination chemistry, Journal of the Chemical Society, Dalton Transactions, 1377-1380 (1987).
[84] K. Ogura, M. Higasa, J. Yano, and N. Endo, Electroreduction of CO2 to C2 and C3 compounds on Bis(4,5-dihydroxybenzene-1,3-disulphonato)ferrate(II)-fixed polyaniline | Prussian Blue-modified electrode in aqueous solutions, Journal of Electroanalytical Chemistry, 379, 373-377 (1994).
[85] G. A. L'Heureux and A. E. Martell, Mixed ligand chelates of copper(II), Journal of Inorganic and Nuclear Chemistry, 28, 481-491 (1966).
[86] G. E. Mont and A. E. Martell, Equilibria Involving the Formation, Hydrolysis, and Olation of Oxovanadium(IV) Chelates in Aqueous Solution1,2, Journal of the American Chemical Society, 88, 1387-1393 (1966).
[87] B. E. Conway and G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics, Electrochimica Acta, 45, 4075-4083 (2000).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw