進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201516515000
論文名稱(中文) 以超音波霧化熱裂解法沉積二氧化鈦應用於紫外光檢測器
論文名稱(英文) TiO2-based Ultraviolet Photodetectors by Ultrasonic Spray Pyrolysis Technique
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 103
學期 2
出版年 104
研究生(中文) 洪昇暉
研究生(英文) Shen-Hui Hong
學號 Q16034095
學位類別 碩士
語文別 英文
論文頁數 96頁
口試委員 指導教授-許渭州
共同指導教授-劉漢胤
口試委員-周榮泉
口試委員-王水進
口試委員-劉文超
口試委員-江孟學
中文關鍵字 二氧化鈦  紫外光檢測器  超音波噴霧熱裂解沉積法 
英文關鍵字 TiO2  ultraviolet photodetectors  ultrasonic spray pyrolysis deposition 
學科別分類
中文摘要 本篇論文主要探討利用超音波霧化熱裂解法沉積二氧化鈦應用於紫外光檢測器,在眾多沉積二氧化鈦薄膜製程中,我們選擇一種非真空環境下即可完成且低成本之製作方法:超音波噴霧熱烈解沉積法,並將此製程分別應用於兩種紫外光檢測器上和元件改善,分別為金屬-半導體-金屬(金-半-金)、金屬-絕緣體-半導體-絕緣體-金屬(金-絕-半-絕-金)結構以及鈍化層的沉積。
為了瞭解二氧化鈦結晶方向、結晶種類、表面粗糙度、晶粒大小、化學組成、氧空缺、折射係數、薄膜厚度,在本研究中使用(一) X-射線繞射分析、(二) 顯微拉曼光譜儀、(三) 原子力顯微鏡、(四) 掃描式電子顯微鏡、(五) 化學分析影像能譜儀、(六) 光致螢光光譜、(七) 橢圓偏光儀、(八) 穿透式電子顯微鏡、(九) 深層能階暫態頻譜。
在瞭解薄膜之材料分析後,將超音波噴霧熱烈解沉積技術應用於(一)金-半-金與(二) 金-絕-半-絕-金紫外光檢測器上成長二氧化鈦主動層和氧化鋁絕緣層,並以電漿輔助化學氣相沉積法成長二氧化矽絕緣層應用於金-絕-半-絕-金紫外光檢測器。為了探討不同指叉寬度造成的特性差異,因此設計了4種不同的指叉寬度的光罩。從金-半-金紫外光檢測器的電流-伏特特性圖可以發現,隨著指叉寬度變小,光電流和暗電流有上升的趨勢,這是由於指叉寬度越小其電場強度越強。以400oC與600oC退火的金-半-金紫外光檢測器去比較,可以發現600oC退火的表現比400oC退火的金-半-金紫外光檢測器還好,這是由於在高溫下進行退火有助於修復二氧化鈦表面的缺陷;綜合材料分析和電性分析,可以發現在600oC退火溫度為本論文中的最佳參數。為了提升元件特性,我們在元件表面沉積了一層20奈米的氧化鋁作為鈍化層;鈍化後的暗電流降低了約10倍使得光暗電流比大幅提升,而且使得紫外光可見光比些微提高和降低了雜訊電流,整體而言改善了元件的特性。
金-絕-半-絕-金的結構是在原本金-半-金結構的主動層和金屬閘極間插入了一層絕緣層去提高其特性。我們選擇了氧化鋁和二氧化矽作為絕緣層的材料,並分別使用超音波霧化熱裂解法和電漿輔助化學氣相沉積法成長20奈米的厚度。以氧化鋁和二氧化矽作為絕緣層的金-絕-半-絕-金紫外光檢測器的特性上各有其優點。氧化鋁絕緣層的金-絕-半-絕-金紫外光檢測器在其光暗電流比、紫外光可見光響應比和感測度上的特性比二氧化矽絕緣層的金-絕-半-絕-金紫外光檢測器來得優異;然而,二氧化矽絕緣層的金-絕-半-絕-金紫外光檢測器在暗電流和暗電流對溫度的敏感度的特性上則是相對優秀。整體而言,以氧化鋁作為金-絕-半-絕-金結構的絕緣體更適合應用於紫外光感測器上。以氧化鋁作為絕緣層的金-絕-半-絕-金紫外光檢測器可以大幅降低金-半-金紫外光檢測器的暗電流和提升對光的感測度。因此,不論是對金-半-金表面進行鈍化或是在主動層和金屬閘極間加入絕緣體形成金-絕-半-絕-金結構都能有效提升其對於紫外光感測的特性。本論文中,超音波噴霧熱烈解沉積技術不僅可以降低生產成本而且可以沉積出高品質的二氧化鈦薄膜,在未來工業的使用上極具潛力。
英文摘要 The research mainly investigates on the TiO2-based ultraviolet (UV) photodetectors (PDs) by using ultrasonic spray pyrolysis technique. Among TiO2 thin film deposition methods, ultrasonic spray pyrolysis deposition (USPD) which is a non-vacuum and low cost approach is used to fabricate the titanium dioxide active layer. Furthermore, this technique is applied to two different structured UV PDs, including metal-semiconductor-metal (MSM) and metal-insulator-semiconductor-insulator-metal (MISIM) structures.
In order to know crystal phases, crystal types, surface roughness, grain sizes, chemical composition, oxygen vacancies, refractive index and thin film thickness of the oxide layer, the (1) X-ray diffraction (XRD), (2) Microscopes Raman spectrometer, (3) Atomic Force Microscopy (AFM), (4) Scanning electron microscope (SEM), (5) Electron Spectroscopy for Chemical Analysis (ESCA), (6) Photoluminescence spectrometer (PL), (7) Ellipsometry, (8) Transmission electron microscopy (TEM) and (9) Deep-level transient spectroscopy are adopted in this research.
After the material analysis of the TiO2 film, the USPD technique is used to grow the TiO2 active layer of the MSM UV PDs and the Al2O3 layer for the passivation and insulator of the MISIM UV PDs and the PECVD is applied to grow the SiO2 for insulator of the MISIM UV PDs. To investigate the characteristics of the different finger spacing widths in the MSM UV PDs, four masks of different finger spacing widths are designed. From the I-V characteristics of the MSM UV PDs, it was found that the smaller the finger spacing width is, the larger the current is. This phenomenon is attributed to the stronger electric field when the finger spacing width gets smaller.
To find out the optimized annealing temperature, the TiO2 with 400oC and 600oC annealing are used to be active layers for the MSM UV PDs. The results show that the TiO2 MSM UV PD with 600oC annealing has better performance because the higher annealing temperature repaired the surface defects. Among the material analyses and electrical characteristics, the 600oC annealing temperature is the better for fabricating TiO2 MSM UV PDs in this thesis. To enhance the performance of the MSM UV PDs, the Al2O3 film on the MSM UV PD as a passivation layer. The dark current of the passivated MSM UV PD is suppressed 10 times lower than that of the MSM UV PD, and this increases the photo-to-dark current ratio, the UV-to-visible rejection ratio and decreases the noise current. Among these electrical analyses, the Al2O3 passivated MSM UV PD effectively improve the performances.
Adding an insulator layer between the metal electrode and active layer in MSM structure is MISIM structure. 20 nm thickness of the Al2O3 and SiO2 grown by USPD&PECVD are used as the insulator layers in the MISIM structures. The photo-to-dark current ratio, the UV-to-visible rejection ratio and the detectivity of the Al2O3 MISIM UV PD are better than those of the SiO2 MISIM UV PD. However, the dark current and the dark current-to temperature sensitivity of the SiO2 MISIM UV PD are better than those of the Al2O3 MISIM UV PD. Among all, the Al2O3 MISIM UV PD is more suitable for UV PDs.
In summaries, the Al2O3 MISIM and the Al2O3 passivated MSM fabricated by the USPD technique improve the performance of the MSM UV PDs. The USPD technique makes good quality of titanium dioxide in a cost-effective way. It’s very promising technique to be used in the future industry.
論文目次 摘要 I
Abstract III
誌 謝 VI
Contents VII
Figure Captions XI
Table Captions XIX
Chapter 1 Introduction 1
1-1 Background of Ultraviolet Photodetectors 1
1-1-1 UV Region 1
1-1-2 TiO2-based Materials for UV Detection 2
1-1-3 Classification of UV PDs 4
1-2 Organization 6
Chapter 2 Basic theory 7
2-1 Metal-Semiconductor Contacts 7
2-2 Metal-Oxide-Semiconductor Diode 8
2-3 Metal-Semiconductor-Metal Ultraviolet Photodetectors 9
2-3-1 Principle of Operation 9
2-3-2 Responsivity and Quantum Efficiency 10
2-3-3 Noise Equivalent Power and Detectivity 10
2-3-4 Photoconductive Gain 11
Chapter 3 Material Growth and Experimental Procedures 13
3-1 Metal-Semiconductor-Metal Ultraviolet Photodetectors 13
3-1-1 TiO2 film deposition 13
3-1-2 Annealing 14
3-1-3 Electrode 14
3-1-4 Al2O3 passivation layer deposition 15
3-2 Metal-Insulator-Semiconductor-Insulator-Metal Ultraviolet Photodetectors 16
3-2-1 TiO2 film deposition 16
3-2-2 Annealing 16
3-2-3 Insulator layer deposition (SiO2 and Al2O3) 16
3-2-4 Electrode 18
Chapter 4 Results and Discussion 20
4-1 Material Analysis 20
4-1-1 X-ray diffraction 20
4-1-2 Microscopes Raman spectrometer 21
4-1-3 Atomic force microscopy 22
4-1-4 Scanning electron microscope 23
4-1-5 Electron spectroscopy for chemical analysis 23
4-1-6 Photoluminescence spectrometer 24
4-1-7 Ellipsometry 25
4-1-8 Transmission electron microscopy 26
4-1-9 Deep-level transient spectroscopy 26
4-2 Metal-Semiconductor-Metal Ultraviolet Photodetectors 27
4-2-1 Current-Voltage Measurement 27
4-2-2 Spectral Response Measurement 29
4-2-3 Low Frequency Noise Measurement and Detectivity 32
4-2-4 Temperature-dependent Measurement 33
4-2-5 Summary 34
4-3 Metal-Insulator-Semiconductor-Insulator-Metal Ultraviolet Photodetectors 36
4-3-1 Current-Voltage Measurement 36
4-3-1-1 Al2O3 insulator 36
4-3-1-2 SiO2 insulator 36
4-3-2 Spectral Response Measurement 37
4-3-2-1 Al2O3 insulator 37
4-3-2-1 SiO2 insulator 37
4-3-3 Low Frequency Noise Measurement and Detectivity 37
4-3-3-1 Al2O3 insulator 37
4-3-3-2 SiO2 insulator 38
4-3-4 Temperature-dependent Measurement 39
4-3-4-1 Al2O3 insulator 39
4-3-4-2 SiO2 insulator 39
4-3-5 Summary 40
Chapter 5 Conclusion and Future Work 41
5-1 Conclusion 41
5-2 Suggestions for Future Work 43
References 44
Figures 51
參考文獻 [1] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762-764, 1999.
[2] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys., vol. 86, pp. 1-78, 1999.
[3] M. A. Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-nitride UV devices,” Jpn. J. Appl. Phys., vol. 44, pp. 7191-7206, 2005.
[4] S. H. Liao, “Characteristics improvement of GaN-based UV photodetectors,” Institute of Microelectronics, National Cheng-Kung University, pp. 21-22, 2011.
[5] C. G. Wu, C. C. Chao, and F. T. Kuo, “Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification,” Catalysis Today., vol.97, pp. 103–112, 2004.
[6] D. A. H. Hanaor, C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J Mater Sci., vol. 46, pp. 855–874, 2011.
[7] M. Z. M. Yusoff, Z. Hassan, N. M. Ahmed, H. A. Hassan, M. J. Abdullah, and M. Rashid, “pn-junction photodiode based on GaN grown on Si (111) by plasma-assisted molecular beam epitaxy,” Sci. Semicond. Process., vol. 16, pp. 1859-1864, 2013.
[8] M. L. Lee, Y. H. Yeh, and S. J. Tu, “Solar-blind p-i-n photodetectors formed on SiO2-patterned n-GaN templates,” IEEE J. Quantum Electron., vol. 48, pp. 1305-1309, 2012.
[9] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, pp. 1718-1720, 2004.
[10] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, and M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol. 71, pp. 2334-2336, 1997.
[11] S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett., vol. 19, pp. 1744-1746, 2007.
[12] M. Kumar, C. Y. Lee, H. Sekiguchi, H. Okada, and A. Wakahara, “Demonstration of a large-area AlGaN/GaN Schottky barrier photodetector on Si with high detection limit,” Semicond. Sci. Technol., vol. 28, pp. 1-5, 2013.
[13] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 /GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett., vol. 23, pp. 444-456, 2011.
[14] Z. D. Huang, R. W. Chuang, W. Y. Weng, S. J. Chang, C. J. Chiu, and S. L. Wu, “GaN Schottky barrier photodetectors with a β-Ga2O3 cap layer,” Appl. Phys. Express, vol. 5, pp. 116701-116701-3, 2012.
[15] S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen, S. L. Wu, and B. R. Huang, “GaN Schottky barrier photodetectors,” IEEE Sensors J., vol. 10, pp. 1609-1614, 2010.
[16] P. C. Chang, K. H. Lee, S. J. Chang, Y. K. Su, T. C. Lin, and S. L. Wu, “III-nitride Schottky rectifiers with an AlGaN/GaN/AlGaN/GaN quadruple layer and their applications to UV detection,” IEEE Sensors J., vol. 10, pp. 799-804, 2010.
[17] S. Aslam, R. E. Vest, D. Franz, F. Yan and Y. Zhao, “Large area GaN Schottky photodiode with low leakage current,” Electron. Lett, vol. 40, pp. 1080-1082, 2004.
[18] T. P. Chen, S. J. Young, S. J. Chang, B. R. Huang, S. M. Wang, C. H. Hsiao, S. L. Wu, and C. B. Yang, “Low-frequency noise characteristics of GaN Schottky barrier photodetectors prepared with nickel annealing,” IEEE Sensors J., vol. 12, pp. 2824-2829, 2012.
[19] L. V. Schalkwyk , W. E. Meyer, F. D. Auret, J. M. Nel, P. N. M. Ngoepe, M. Diale, “Characterization of AlGaN-based metal–semiconductor solar-blind UV photodiodes with IrO2 Schottky contacts,” Physica B, vol. 407, pp. 1529-1532, 2011.
[20] C. H. Chen, “GaN ultraviolet Schottky barrier photodetectors with ZrO2 or SiO2 insulators,” OPT REV, vol. 18, pp. 107-110, 2011.
[21] J. D. Hwang, and C. J. Lin, “High 366/254-nm rejection contrast GaN MIS photodetectors using nano spin-oxide,” IEEE Electron Device Lett., vol. 30, pp. 27-29, 2009.
[22] M. L. Lee, T. S. Mue, F.W. Huang, J. H. Yang, and J. K. Sheu, “High-performance GaN metal–insulator–semiconductor ultraviolet photodetectors using gallium oxide as gate layer,” Opt. Express, vol. 19, pp.12658-12663, 2011.
[23] J. D. Hwang, G. H. Yang, Y. Y. Yang, and P. C. YAO, “Nitride-based UV metal–insulator–semiconductor photodetector with liquid-phase-deposition oxide,” Jpn. J. Appl. Phys., vol. 44, pp. 7913-1915, 2005.
[24] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sensors J., vol. 11, pp. 999-1003, 2011.
[25] L. Z. Hsieh, and J. Y. Chang, “Current characteristics of AlGaN/AlN ultraviolet photodetector with metal-semiconductor-metal structure,” APPL MECH MATER, vol. 300-301, pp. 1285-1288, 2013.
[26] C. J. Lee, Y. J. Kwon, C. H. Won, J. H. Lee, and S. H. Hahm, “Dual-wavelength sensitive AlGaN/GaN metal-insulator-semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios,” vol. 103, pp. 111110-1-111110-5, 2013.
[27] Z. D. Huang, W. Y. Weng, S. J. Chang, C. J. Chiu, T. J. Hsueh, and S. L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sensors J., vol. 13, pp. 3462-3467, 2013.
[28] F. Xie, H. Lu, D. Chen, R. Zhang, and Y. Zheng, “GaN MSM photodetectors fabricated on bulk GaN with low dark-current and high UV/visible rejection ratio,” Phys. Status Solidi C, vol. 8, pp. 2473-2475, 2011.
[29] Z. D. Huang, W. Y. Weng, S. J. Chang, C. J. Chiu, T. J. Hsueh, W. C. Lai, and S. L. Wu, “GaN MSM UV photodetectors with an Al0.82In0.18N intermediate layer,” J. Electrochem. Soc., vol. 158, pp. J221-J224, 2011.
[30] C. H. Chen, Y. H. Tsai, S. Y. Tsai, and C. F. Cheng, “GaN-based metal–semiconductor–metal ultraviolet photodetectors with the ZrO2 insulating layer,” Jpn. J. Appl. Phys., vo. 50, no. 4S, pp. 04DG19-1-04DG19-4, 2011.
[31] F. Xie, H. Lu , X. Xiu, D. Chen, P. Han, R. Zhang, Y. Zheng, “Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate,” Solid state electron, vol. 57, pp. 39-42, 2011.
[32] C. W. Hsu, Y. F. Chen, and Y. K. Su, “Quality improvement of GaN on Si substrate for ultraviolet photodetector application,” IEEE J. Quantum Electron., vol. 50, pp. 35-41, 2014.
[33] F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, and J. Zhou, “Ultra-low dark current AlGaN-based solar-blind metal–semiconductor–metal photodetectors for high-temperature applications,” IEEE Sensors J., vol. 12, pp. 2086-2090, 2012.
[34] E. H. Rhoderick, M. A., M. Sc., C. Eng., and F. lnst. P., “Metal-semiconductor contacts,” IEE PROC, vol. 129, pp. 1-14, 1982.
[35] S. M. Sze, and K. K. Ng, “Physics of semiconductor devices,” John Wiley & Sons, Inc., 2007.
[36] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, pp. 996-1000, 2011.
[37] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4, pp. 996-1000, 2011..
[38] P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Material., vol. 6, pp. 352–358, 2005.
[39] W. C. Ou, “Enhanced performances of GaN-based MOS-HEMTs by surface passivation and post oxide annealing,” Institute of Microelectronics, National Cheng-Kung University, pp. 1-103, 2013.
[40] H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis,” IEEE Photon. Technol. Lett., vol. 26, pp. 1243-1246, 2014.
[41] H. Xiao, Introduction to semiconductor manufacturing technology, Upper Saddle
River, N.J. : Prentice Hall, 2001.
[42] Center for micro/nano science and technology, NCKU.
[43] W. C. Ou, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D: Appl. Phys., vol. 43, pp. 415103, 2010.
[44] Halvorson, R. A.; Vikesland, P. J., “Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses,” Environ. Sci. Technol.., vol. 44 (20), pp. 7749-7755, 2010.
[45] D. V. Lang, "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors", J. Appl. Phys., vol. 45 , pp. 3023, 1974.
[46] H. F. Zhang, M. Zhang, C. H. Feng, W. Y. Chen, C. X. Liu, J. R. Zhou, and S. P. Ruan, “Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors,” Appl. Optics., vol. 51, pp. 894-897, Mar. 2012.
[47] W. J. Wang, C. X. Shan, H. Zhu, F. Y. Ma, D. Z. Shen, X. W. Fan and K. L. Choy, “Metal-insulator-semiconductor-insulator-metal structured titanium dioxide ultraviolet photodetector,” J. Phys. D: Appl. Phys., vol. 43, pp. 045102, 2010.
[48] H. Huang, Y. Xie, Z. Zhang, F. Zhang, Q. Xu, Z. Wu, “Grown and fabrication of sputtered TiO2 based ultraviolet photodetectors,” Appl. Surf. Sci., vol. 293. pp. 248– 254, 2014.
[49] H. Huang, Y. Xie, W. Yang, F. Zhang, J. Cai, Z. Wu, “Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contact,” IEEE Electron Device Lett., vol. 32, pp. 045102, APRIL 2011.
[50] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, “Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contact,” Appl. Phys. Lett., vol. 94, pp. 123502, 2009.
[51] W. S. Shih, S. J. Young, L.W. Ji, W. Water, T. H. Meen, and H. W. Shiu, “Effect of Oxygen Plasma Treatment on Characteristics of TiO2 photodetectors,” IEEE Sens. J., vol. 11, pp. 3031-3035, NOVEMBER 2011.
[52] D. Çalkan, B. Bütün, A. Özcan, and E. Özbay, “Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate,” J. Vac. Sci. Technol. B., vol. 31, pp. 020606, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw