進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201515592500
論文名稱(中文) 以實驗法探究臉書使用者對不同粉絲專頁推薦方式之知覺風險與使用意圖:以社會傳播理論為基礎
論文名稱(英文) An Experimental Study on Facebook Users' Perceived Risk and Use Intention toward Different Fan Page Recommendations:Based on Social Contagion Theory
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 蔡銘哲
研究生(英文) Ming-Jer Tsai
學號 R76024124
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-王維聰
口試委員-林彣珊
口試委員-陳信宏
中文關鍵字 社會傳播理論  Facebook  粉絲專頁  知覺風險  使用意圖 
英文關鍵字 Social Contagion Theory  Facebook  Fan Page  Perceived Risk  Use Intention 
學科別分類
中文摘要 網路的迅速發展與普及造就了社群平台的興起,人們透過社群平台互通有無、交換資訊。在台灣地區又以Facebook擁有最多的用戶,數量約在1600萬人左右。在這樣的用戶基數下,許多企業、品牌將Facebook平台視為廣告的最佳管道,於是紛紛創立自家的粉絲專頁興辦各種宣傳活動,希望可以透過粉絲專頁達成增知名度之目標。然而,在平台上所呈現之廣告及其所達成的效益令人好奇。本研究以Facebook作為研究平台,平台上粉絲專頁除了透過Facebook上使用者之間的互相推薦外,其也提供粉絲專頁經營者以付費之方式將粉絲專頁以廣告的方式載入使用者動態牆,藉以提升粉絲專頁的觸及用戶數量,達成宣傳的目的。
但隨著廣告貼文數量的增加以及平台上各類貼文未經分類的呈現方式,使用者對於動態牆上的資訊產生不確定感,無法確定動態牆中的資訊是否為自己所想看的,且對貼文內容的正確性以及與自身期望相符的程度感受到可能的落差而產生知覺風險。本研究以社會傳播理論為基礎定位Facebook上之資訊傳播過程並延伸資訊推薦者的社會位階分類(分為高、同、低社會位階),使用實驗設計配合問卷調查與訪談之方式探究Facebook使用者在接受到粉絲專頁廣告與好友推薦粉絲專頁資訊時是否在知覺風險與使用意圖上有所差異,希望探究出最佳的粉絲專頁傳播模式。
研究結果顯示在四種不同的推薦情境中使用者對於Facebook付費廣告的知覺風險最高、使用意圖最低;而使用者對於同社會位階的推薦資訊所感到的知覺風險最低、使用意圖最高。此結果提供粉絲專頁經營者在於廣告宣傳資源上比重的分配建議,經營者應減少付費廣告的經費投入,而多舉辦能夠引起同社會位階人群共襄盛舉的活動,以期達到資訊傳播過程中知覺風險的降低與使用意圖的增加,使粉絲專頁的粉絲數量能快速的增長,達到社群行銷的目的。
英文摘要 The development of Internet technology has led to the popularity of Social Network Sites. In Taiwan, many enterprises have their own fan pages on Facebook. They organize promotion activities through fan pages to make their brands to be well-known. Nowadays, Facebook provides fan page owners the advertising services which seems to be a very effective way to propagate marketing messages to the potential customers, but the effectiveness of advertisement on Facebook is still unclear, because advertisement posts from unfamiliar users or brands may cause users feel uncertain about the information. This study focuses on comparing four different types of fan page recommendation methods to figure out which ones of them will reduce user’s perceived risk and increase use intention toward fan pages the most. We refer to social contagion theory and adopt the three recommender’s social stages based on the “Structural Equivalence Equals Cohesion” model to see the different effects of them. The research approach of experimental design is used in this study, which is complemented by the use of survey and personal interviews. Based on the survey data collected from 60 students, this study has six hypothesis supported. The fan page recommendation from Facebook recommendation system results in the worst performance and the recommendation from peer friend results in the best performance. The results show that fan page owners should put more energy on the promotional activities which make users to spread the page to peer friends because that will be the most effective way to get more fans.
論文目次 摘要 i
Abstract iii
誌謝 vii
目錄 viii
表目錄 xi
圖目錄 xii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 研究範圍與限制 6
第四節 研究流程 8
第貳章 文獻探討 9
第一節 社會傳播理論 9
2.1.1凝聚力 10
2.1.2結構等價 11
2.1.3社會傳播理論模型 11
第二節 Facebook 13
第三節 推薦系統 15
第四節 知覺風險 17
第五節 使用意圖 19
第參章 研究方法 20
第一節 研究假說 20
3.1.1 使用意圖研究假說 20
3.1.2 知覺風險研究假說 22
第二節 實驗設計 23
3.2.1 實驗流程 24
第三節 資料分析方法 28
第四節 實驗情境 29
3.4.1 情境:付費廣告 29
3.4.2 情境:好友推薦 31
第五節 實驗刺激圖順序與粉絲專頁名稱 32
第六節 實驗對象 32
第七節 問卷發展 33
3.7.1 親密度量表 33
3.7.2 知覺風險 36
3.7.3 使用意圖 37
第肆章 資料分析與結果 38
第一節 問卷回收狀況 38
第二節 基本資料敘述統計 38
第三節 研究變項敘述性統計 39
第四節 研究變項常態性檢定 41
第五節 項目分析 43
第六節 信度分析 45
第七節 單因子變異數分析 47
第伍章 結論與建議 53
第一節 研究發現與結論 53
第二節 研究貢獻 54
第三節 研究限制 57
第四節 未來研究方向 60
參考文獻 61
附錄一 68
附錄二 70
參考文獻 網路及中文文獻:
ARO/MMX(2013)Media Metrix網路流量報告 http://www.insightxplorer.com/news/news_05_22_13.html
Cereja Technology(2014)セレージャテクノロジー、アジア各国のFacebook推定ユーザ数を発表。1位インド、ユーザ数が1億1600万人。日本、200万人増の2,400万人。TVCMが影響か?アジア全体では前回調査比1112万人増。
http://www.cereja.co.jp/press_release20141113.pdf
Disruptive Communications(2013)REVEALED: What Customers Hate About Social Brands [INFOGRAPHIC] http://www.adweek.com/socialtimes/social-brand-mistakes/488929?red=at
Digital Marketing Ramblings (2014) By the Number: 80 Amazing Facebook Page Statistics
http://expandedramblings.com/index.php/facebook-page-statistics/
Digital Information World (2014)Where Do Social Media Audiences Spend Their Time [INFOGRAPHIC]
http://www.digitalinformationworld.com/2014/01/which-social-networks-should-business-care-about-in-2014-infographic.html#axzz3LQgcgDdg
台灣網路資訊中心(2014)「台灣寬頻網路使用調查」http://www.twnic.net.tw/NEWS4/135.pdf
吳明隆. (2007). SPSS 操作與應用: 問卷統計分析實務. 五南圖書出版股份有限公司.

英文文獻:
Aral, S., & Walker, D. (2011).Creating social contagion through viral product design: A randomized trial of peer influence in networks. Management Science,57(9), 1623-1639.
Baird, I. S., & Thomas, H. (1985).Toward a contingency model of strategic risk taking.Academy of management Review,10(2), 230-243.
Bedi, P., Kaur, H., & Marwaha, S. (2007, January). Trust Based Recommender System for Semantic Web. In IJCAI (Vol. 7, pp. 2677-2682).
Bonhard, P., Harries, C., McCarthy, J., & Sasse, M. A. (2006, April). Accounting for taste: using profile similarity to improve recommender systems. In Proceedings of the SIGCHI, 2006 Conference on Human Factors in Computing Systems ,(pp. 1057-1066). New York, NY, USA: ACM.
Burt, R. S. (1987). Social contagion and innovation: Cohesion versus structural equivalence. American journal of Sociology, 92(6), 1287-1335.
Bukowski, W. M., Hoza, B., & Boivin, M. (1994). Measuring friendship quality during pre-and early adolescence: The development and psychometric properties of the Friendship Qualities Scale. Journal of social and Personal Relationships, 11(3), 471-484.
Cunningham, S. M., & Cox, D. (1967). Risk taking and information handling in consumer behavior. Risk taking and information handling in consumer behavior
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses.Journal of Neuroscience methods,118(2), 115-128.
Dimoka, A. (2010). What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study.Mis Quarterly,34(2), 373-396.
Dimoka, A., and Davis, F. D. 2008. “Where Does TAM Reside in the Brain? The Neural Mechanisms Underlying TechnologyAdoption,” in Proceedings of the 29th International Conferenceon Information Systems, Paris, France, December 14-17
Featherman, M. S., & Pavlou, P. A. (2003).Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
Featherman, M. S., Miyazaki, A. D., & Sprott, D. E. (2010). Reducing online privacy risk to facilitate e-service adoption: the influence of perceived ease of use and corporate credibility. Journal of Services Marketing, 24(3), 219-229.
Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117-140.
Fishbein, M., & Ajzen, I. (1975).Belief, attitude, intention and behavior: An introduction to theory and research.
Fujimoto, K., & Valente, T. W. (2012). Social network influences on adolescent substance use: Disentangling structural equivalence from cohesion. Social Science & Medicine, 74(12), 1952-1960.
Garbarino, E., & Strahilevitz, M. (2004). Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation.Journal of Business Research, 57(7), 768-775.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly,27(1), 51-90.
Hidler, J., Hodics, T., Xu, B., Dobkin, B., & Cohen, L. G. (2006).MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. Journal of neuroscience methods, 155(2), 300-307.
Horenczyk, G., & Tatar, M. (1998). Friendship expectations among immigrant adolescents and their host peers. Journal of adolescence, 21(1), 69-82.
Huang, H. C., Shih, H. Y., & Wu, Y. C. (2011). Contagion effects of national innovative capacity: Comparing structural equivalence and cohesion models.Technological Forecasting and Social Change, 78(2), 244-255.
Huettel, S. A., Song, A. W., & McCarthy, G. (2005). Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices.The Journal of Neuroscience,25(13), 3304-3311.
Jamali, M., & Ester, M. (2010, September). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142). ACM.
Kaplan, L. B., Szybillo, G. J., & Jacoby, J. (1974). Components of perceived risk in product purchase: A cross-validation. Journal of applied Psychology,59(3), 287.
Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X., & Milham, M. P. (2006). Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making.Neuroimage,32(1), 477-484.
Langley, D. J., Bijmolt, T. H., Ortt, J. R., & Pals, N. (2012). Determinants of social contagion during new product adoption. Journal of Product Innovation Management,29(4), 623-638.
Ljepava N., Orr, R. R., Locke, S., & Ross, C. (2013).Personality and social characteristics of Facebook non-users and frequent users. Computers in Human Behavior, 29(4), 1602-1607.
Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and security risks for online shopping. Journal of Consumer affairs, 35(1), 27-44.
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce,7(3), 101-134.
Pempek, T. A., Yermolayeva, Y. A., & Calvert, S. L. (2009). College students' social networking experiences on Facebook..Journal of Applied Developmental Psychology, 30(3), 227-238.
Peter, J. P., & Tarpey Sr, L. X. (1975).A comparative analysis of three consumer decision strategies. Journal of Consumer Research, 2(1),29-37.
Riedl, R., Hubert, M., & Kenning, P. (2010). Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers.MIS Quarterly, 34(2), 397-428.
Robert Imbriale (2009),The Facebook Factor. Ultimate Wealth Publishing.
Roediger, H. L., Meade, M. L., & Bergman, E. T. (2001). Social contagion of memory. Psychonomic bulletin & review, 8(2), 365-371.
Roselius, R. (1971). Consumer Rankings of Risk Reduction Methods. Journal of Marketing, 35(1), 56-61.
Schafer, J. B., Konstan, J., & Riedl, J. (1999, November).Recommender systems in e-commerce.In Proceedings of the 1st ACM conference on Electronic commerce, Denver, CO, pp. 158^166.
Scherer, C. W., & Cho, H. (2003).A social network contagion theory of risk perception.Risk Analysis, 23(2), 261-267.
Sharabany, R. (1994). Intimate friendship scale: Conceptual underpinnings, psychometric properties and construct validity.Journal of Social and Personal Relationships,11(3), 449-469.
Shih, H. Y. (2008). Contagion effects of electronic commerce diffusion: Perspective from network analysis of industrial structure.Technological Forecasting and Social Change,75(1), 78-90.
Shih, H. Y. (2012). The dynamics of local and interactive effects on innovation adoption: The case of electronic commerce. Journal of Engineering and Technology Management, 29(3), 434-452.
Sinha, R. R., & Swearingen, K. (2001, June). Comparing Recommendations Made by Online Systems and Friends. In DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (Vol. 106).
Taylor, J. W. (1974). The Role of Risk in Consumer Behavior. Journal of Marketing, 38(2), 54-60.
Ullrich-French, S., & Smith, A. L. (2006). Perceptions of relationships with parents and peers in youth sport: Independent and combined prediction of motivational outcomes. Psychology of sport and exercise, 7(2), 193-214.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478
Zhao, L., Lu, Y., & Gupta, S. (2012). Disclosure intention of location-related information in location-based social network services. International Journal of Electronic Commerce,16(4), 53-90.
Ziegler, C. N., & Lausen, G. (2004, March). Analyzing Correlation between Trust and User Similarity in Online Communities. In Trust Management: Second International Conference, ITrust 2004, Oxford, UK, March 29-April 1, 2004, Proceedings (Vol. 2, p. 251). Springer Science & Business Media.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw