進階搜尋


下載電子全文  
系統識別號 U0026-2407201420435100
論文名稱(中文) 以第一原理探討鋰空氣電池之石墨烯缺陷或摻雜缺陷對過氧化鋰堆積之影響
論文名稱(英文) Influence of graphene defects or doping graphene defects on the accumulation of lithium peroxide by first-principle calculation
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 江廷廸
研究生(英文) Ting-Di Chiang
學號 N16014344
學位類別 碩士
語文別 中文
論文頁數 56頁
口試委員 指導教授-陳鐵城
口試委員-林震銘
口試委員-屈子正
口試委員-方得華
中文關鍵字 第一原理  VASP  石墨烯  摻雜  鋰空氣電池 
英文關鍵字 First principle  VASP  graphene  doping  lithium-air batteries 
學科別分類
中文摘要 現今能源的短缺越來越嚴重,石油在經過數年後,將在地球上消失,而人類所需的能源產品又越來越多,雖說當今鋰離子電池的應用很廣,但其能量密度低的缺點,無法應用在汽車、卡車..等的大型產品上,故能量密度高的鋰空氣電池,即受到了密切的關注,而目前鋰空氣電池的陰極材料以石墨烯為主,但該石墨烯有著過氧化鋰的堆積,導致鋰空氣電池無法再進行充放電的問題,故本研究目的是再找尋以何種缺陷結構較適合作為陰極材料,改善通放電不順的問題,以降低陰極材料於試用產品的調換所需的成本和時間,來提升實用性。
  本文利用第一原理的密度泛函理論(DFT),對陰極材料石墨烯缺陷與過氧化鋰Li2O2、(Li2O2)2做模擬,透過其能量值與結構圖,探討過氧化鋰對陰極材料做物理吸附的情況,另一方面,亦模擬過氧化鋰或氧氣對摻雜氮之石墨烯的吸附行為,探討氧氣流通量與堆積的問題,以決定何種陰極材料的可行性。
  由吸附能發現,過氧化鋰在石墨烯缺陷的物理吸附比起石墨烯來的大,並比較了過氧化鋰對四種缺陷的吸附能,得知T5T7缺陷的吸附能最大,亦即對過氧化鋰的吸引力較大,另外,再摻雜氮後的SVD缺陷,則是可是增大其表面積,促進對過氧化鋰或氧氣的附著,而後比較了各種陰極材料的摻氮數量後,證明了當摻氮的濃度越高,氧氣流通量亦越高,其中又以石墨氮,對氧氣的吸附最大。


英文摘要 The Li-air battery’s graphene is the main material for the cathode so far. However, graphene has the disadvantage of accumulation phenomenon of Li2O2 particles which significantly hinders the discharge of battery. In this study, the first principle based on the density functional theory was adopted to study the interaction between the graphene’s defects and lithium peroxide. This paper shows that the T5T7 defect and nitrogen-doped SVD defect are the best materials for the air electrode because they can attract Li2O2 well and have the best oxygen circulation.
論文目次 摘要.............................................. i
Abstract......................................... ii
致謝............................................... vi
目錄................................................. vii
表目錄............................................... ix
圖目錄................................................. x
第一章 緒論......................................... 1
1.1前言............................................ 1
1.2研究目的與動機......................................... 1
1.3文獻回顧......................................... 2
1.4 本文架構......................................... 7
第二章 研究方法......................................... 8
2.1過氧化鋰介紹......................................... 8
2.2石墨烯及其缺陷介紹.................................... 13
2.3空氣電極簡介......................................... 15
2.4模擬方法......................................... 17
第三章 基本理論......................................... 18
3.1第一原理......................................... 18
3.2密度泛函理論(Density functional theory)......... 19
3.2.1局部密度函數近似法(LDA)........................ 19
3.2.2廣義梯度近似法(GGA)........................... 20
3.2.3 PBE贋勢...................................... 20
3.2.4虛位勢法(Pseudopotential method).............. 21
3.3 DFT之計算軟體(Density Functional Theory)....... 21
3.3.1 Gaussian......................................... 22
3.3.2 ADF......................................... 22
3.3.3 Density functional calculations on molecules.. 23
第四章 結果與討論......................................... 24
4.1 VASP......................................... 24
4.1.1 KPOINTS點測試...................................... 24
4.1.2結構優化......................................... 28
4.1.3靜態計算......................................... 30
4.2間距測試與缺陷計算................................. 30
4.2.1過氧化鋰間距測試................................... 30
4.2.2吸附距離測試................................... 34
4.2.3各缺陷計算結果................................... 37
4.2.4石墨烯及其缺陷摻雜計算結果............................ 41
第五章 結論與未來發展................................... 49
5.1結論.......................................... 49
5.2未來發展.......................................... 50
參考文獻............................................ 51
參考文獻 [1] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium - Air Battery: Promise and Challenges," Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, Jul 15 2010.
[2] A. Debart, A. J. Paterson, J. Bao, and P. G. Bruce, "alpha-MnO(2) nanowires: A catalyst for the O(2) electrode in rechargeable lithium batteries," Angewandte Chemie-International Edition, vol. 47, pp. 4521-4524, 2008 2008.
[3] E. L. Littauer and K. C. Tsai, "Anodic behavior of lithium in aqueous-electrolytes .1. transient passivation," Journal of the Electrochemical Society, vol. 123, pp. 771-776, 1976.
[4] K. M. Abraham and Z. Jiang, "A polymer electrolyte-based rechargeable lithium/oxygen battery," Journal of the Electrochemical Society, vol. 143, pp. 1-5, Jan 1996.
[5] Z. Shengshui, M. S. Ding, X. Kang, J. Allen, and T. R. Jow, "Understanding solid electrolyte interface film formation on graphite electrodes," Electrochemical and Solid-State Letters, vol. 4, pp. A206-8, Dec. 2001.
[6] B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, and K. M. Abraham, "A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery," Journal of the Electrochemical Society, vol. 157, pp. A50-A54, 2010 2010.
[7] M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, "Recent development of carbon materials for Li ion batteries," Carbon, vol. 38, pp. 183-197, 2000.
[8] D. Linden and T. B. Reddy, Handbook of batteries, 3rd ed. New York: McGraw-Hill, 2002.
[9] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, "Li-O-2 and Li-S batteries with high energy storage (vol 11, pg 19, 2012)," Nature Materials, vol. 11, Feb 2012.
[10] R. Padbury and X. Zhang, "Lithium-oxygen batteries-Limiting factors that affect performance," Journal of Power Sources, vol. 196, pp. 4436-4444, May 15 2011.
[11] J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, et al., "Hierarchically Porous Graphene as a Lithium-Air Battery Electrode," Nano Letters, vol. 11, pp. 5071-5078, Nov 2011.
[12] F. Feher, I. Vonwilucki, and G. Dost, "Beitrage zur kenntnis des wasserstoffperoxyds und seiner derivate, .7. Uber die kristallstruktur des lithiumperoxyds, Li_2 O_2," Chemische Berichte-Recueil, vol. 86, pp. 1429-1437, 1953 1953.
[13] H. Foppl, "Die kristallstrukturen der alkaliperoxyde," Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol. 291, pp. 12-50, 1957 1957.
[14] L. G. Cota and P. de la Mora, "On the structure of lithium peroxide, Li_2 O_2," Acta Crystallographica Section B-Structural Science, vol. 61, pp. 133-136, Apr 2005.
[15] M. K. Y. Chan, E. L. Shirley, N. K. Karan, M. Balasubramanian, Y. Ren, J. P. Greeley, et al., "Structure of Lithium Peroxide," Journal of Physical Chemistry Letters, vol. 2, pp. 2483-2486, Oct 6 2011.
[16] J. Chen, J. S. Hummelshoj, K. S. Thygesen, J. S. G. Myrdal, J. K. Norskov, and T. Vegge, "The role of transition metal interfaces on the electronic transport in lithium-air batteries," Catalysis Today, vol. 165, pp. 2-9, May 16 2011.
[17] R. R. Mitchell, B. M. Gallant, C. V. Thompson, and Y. Shao-Horn, "All-carbon-nanofiber electrodes for high-energy rechargeable Li-O-2 batteries," Energy & Environmental Science, vol. 4, pp. 2952-2958, Aug 2011.
[18] K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss, "Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium-Air Batteries," Journal of Physical Chemistry C, vol. 116, pp. 23890-23896, Nov 15 2012.
[19] R. S. Assary, K. C. Lau, K. Amine, Y.-K. Sun, and L. A. Curtiss, "Interactions of Dimethoxy Ethane with Li_2 O_2 Clusters and Likely Decomposition Mechanisms for Li-O-2 Batteries," Journal of Physical Chemistry C, vol. 117, pp. 8041-8049, Apr 25 2013.
[20] V. Timoshevskii, Z. Feng, K. H. Bevan, J. Goodenough, and K. Zaghib, "Improving Li_2 O_2 conductivity via polaron preemption: An ab initio study of Si doping," Applied Physics Letters, vol. 103, Aug 12 2013.
[21] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, Mar 1 2007.
[22] P. A. Denis and F. Iribarne, "Comparative Study of Defect Reactivity in Graphene," Journal of Physical Chemistry C, vol. 117, pp. 19048-19055, Sep 19 2013.
[23] J. R. Xiao, J. Staniszewski, and J. W. Gillespie, Jr., "Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 715-723, Jan 15 2010.
[24] D. Gunlycke and C. T. White, "Graphene Valley Filter Using a Line Defect," Physical Review Letters, vol. 106, Mar 28 2011.
[25] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural Defects in Graphene," Acs Nano, vol. 5, pp. 26-41, Jan 2011.
[26] G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, D. Y. Kim, and K. M. Ho, "D(i)ffusion, coalescence, and reconstruction of vacancy defects in graphene layers," Physical Review Letters, vol. 95, Nov 11 2005.
[27] H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The role of defects and doping in 2D graphene sheets and 1D nanoribbons," Reports on Progress in Physics, vol. 75, Jun 2012.
[28] Z.-q. Fang, M. Hu, W.-x. Liu, Y.-r. Chen, Z.-y. Li, and G.-y. Liu, "Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery," Electrochimica Acta, vol. 51, pp. 5654-5659, Aug 15 2006.
[29] J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, et al., "Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery," Journal of the Electrochemical Society, vol. 150, pp. A1351-A1356, Oct 2003.
[30] D. C. Patton, D. V. Porezag, and M. R. Pederson, "Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules," Physical Review B, vol. 55, pp. 7454-7459, Mar 15 1997.
[31] Y. K. Zhang, W. Pan, and W. T. Yang, "Describing van der Waals Interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional," Journal of Chemical Physics, vol. 107, pp. 7921-7925, Nov 15 1997.
[32] C. Sheng, Z. Yajun, H. Qijun, W. Hao, and W. Gaofeng, "Effects of vacancy defects on graphene nanoribbon field effect transistor," Micro & Nano Letters, vol. 8, pp. 816-21, Nov. 2013.
[33] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, vol. 39, pp. 507-514, 2001 2001.
[34] B. Panella, M. Hirscher, and S. Roth, "Hydrogen adsorption in different carbon nanostructures," Carbon, vol. 43, pp. 2209-2214, Aug 2005.
[35] X.-L. Wei, Y.-P. Chen, R.-Z. Wang, and J.-X. Zhong, "Studies on electrical properties of graphene nanoribbons with pore defects," Acta Physica Sinica, vol. 62, Mar 2013.
[36] Z. Chen, D. Higgins, H. Tao, R. S. Hsu, and Z. Chen, "Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications," Journal of Physical Chemistry C, vol. 113, pp. 21008-21013, Dec 10 2009.
[37] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis," Acs Nano, vol. 5, pp. 4350-4358, Jun 2011.
[38] H. T. Liu, Y. Q. Liu, and D. B. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, pp. 3335-3345, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw