參考文獻 |
[1] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium - Air Battery: Promise and Challenges," Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, Jul 15 2010.
[2] A. Debart, A. J. Paterson, J. Bao, and P. G. Bruce, "alpha-MnO(2) nanowires: A catalyst for the O(2) electrode in rechargeable lithium batteries," Angewandte Chemie-International Edition, vol. 47, pp. 4521-4524, 2008 2008.
[3] E. L. Littauer and K. C. Tsai, "Anodic behavior of lithium in aqueous-electrolytes .1. transient passivation," Journal of the Electrochemical Society, vol. 123, pp. 771-776, 1976.
[4] K. M. Abraham and Z. Jiang, "A polymer electrolyte-based rechargeable lithium/oxygen battery," Journal of the Electrochemical Society, vol. 143, pp. 1-5, Jan 1996.
[5] Z. Shengshui, M. S. Ding, X. Kang, J. Allen, and T. R. Jow, "Understanding solid electrolyte interface film formation on graphite electrodes," Electrochemical and Solid-State Letters, vol. 4, pp. A206-8, Dec. 2001.
[6] B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, and K. M. Abraham, "A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery," Journal of the Electrochemical Society, vol. 157, pp. A50-A54, 2010 2010.
[7] M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, "Recent development of carbon materials for Li ion batteries," Carbon, vol. 38, pp. 183-197, 2000.
[8] D. Linden and T. B. Reddy, Handbook of batteries, 3rd ed. New York: McGraw-Hill, 2002.
[9] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, "Li-O-2 and Li-S batteries with high energy storage (vol 11, pg 19, 2012)," Nature Materials, vol. 11, Feb 2012.
[10] R. Padbury and X. Zhang, "Lithium-oxygen batteries-Limiting factors that affect performance," Journal of Power Sources, vol. 196, pp. 4436-4444, May 15 2011.
[11] J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, et al., "Hierarchically Porous Graphene as a Lithium-Air Battery Electrode," Nano Letters, vol. 11, pp. 5071-5078, Nov 2011.
[12] F. Feher, I. Vonwilucki, and G. Dost, "Beitrage zur kenntnis des wasserstoffperoxyds und seiner derivate, .7. Uber die kristallstruktur des lithiumperoxyds, Li_2 O_2," Chemische Berichte-Recueil, vol. 86, pp. 1429-1437, 1953 1953.
[13] H. Foppl, "Die kristallstrukturen der alkaliperoxyde," Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol. 291, pp. 12-50, 1957 1957.
[14] L. G. Cota and P. de la Mora, "On the structure of lithium peroxide, Li_2 O_2," Acta Crystallographica Section B-Structural Science, vol. 61, pp. 133-136, Apr 2005.
[15] M. K. Y. Chan, E. L. Shirley, N. K. Karan, M. Balasubramanian, Y. Ren, J. P. Greeley, et al., "Structure of Lithium Peroxide," Journal of Physical Chemistry Letters, vol. 2, pp. 2483-2486, Oct 6 2011.
[16] J. Chen, J. S. Hummelshoj, K. S. Thygesen, J. S. G. Myrdal, J. K. Norskov, and T. Vegge, "The role of transition metal interfaces on the electronic transport in lithium-air batteries," Catalysis Today, vol. 165, pp. 2-9, May 16 2011.
[17] R. R. Mitchell, B. M. Gallant, C. V. Thompson, and Y. Shao-Horn, "All-carbon-nanofiber electrodes for high-energy rechargeable Li-O-2 batteries," Energy & Environmental Science, vol. 4, pp. 2952-2958, Aug 2011.
[18] K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss, "Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium-Air Batteries," Journal of Physical Chemistry C, vol. 116, pp. 23890-23896, Nov 15 2012.
[19] R. S. Assary, K. C. Lau, K. Amine, Y.-K. Sun, and L. A. Curtiss, "Interactions of Dimethoxy Ethane with Li_2 O_2 Clusters and Likely Decomposition Mechanisms for Li-O-2 Batteries," Journal of Physical Chemistry C, vol. 117, pp. 8041-8049, Apr 25 2013.
[20] V. Timoshevskii, Z. Feng, K. H. Bevan, J. Goodenough, and K. Zaghib, "Improving Li_2 O_2 conductivity via polaron preemption: An ab initio study of Si doping," Applied Physics Letters, vol. 103, Aug 12 2013.
[21] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, Mar 1 2007.
[22] P. A. Denis and F. Iribarne, "Comparative Study of Defect Reactivity in Graphene," Journal of Physical Chemistry C, vol. 117, pp. 19048-19055, Sep 19 2013.
[23] J. R. Xiao, J. Staniszewski, and J. W. Gillespie, Jr., "Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 715-723, Jan 15 2010.
[24] D. Gunlycke and C. T. White, "Graphene Valley Filter Using a Line Defect," Physical Review Letters, vol. 106, Mar 28 2011.
[25] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural Defects in Graphene," Acs Nano, vol. 5, pp. 26-41, Jan 2011.
[26] G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, D. Y. Kim, and K. M. Ho, "D(i)ffusion, coalescence, and reconstruction of vacancy defects in graphene layers," Physical Review Letters, vol. 95, Nov 11 2005.
[27] H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The role of defects and doping in 2D graphene sheets and 1D nanoribbons," Reports on Progress in Physics, vol. 75, Jun 2012.
[28] Z.-q. Fang, M. Hu, W.-x. Liu, Y.-r. Chen, Z.-y. Li, and G.-y. Liu, "Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery," Electrochimica Acta, vol. 51, pp. 5654-5659, Aug 15 2006.
[29] J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, et al., "Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery," Journal of the Electrochemical Society, vol. 150, pp. A1351-A1356, Oct 2003.
[30] D. C. Patton, D. V. Porezag, and M. R. Pederson, "Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules," Physical Review B, vol. 55, pp. 7454-7459, Mar 15 1997.
[31] Y. K. Zhang, W. Pan, and W. T. Yang, "Describing van der Waals Interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional," Journal of Chemical Physics, vol. 107, pp. 7921-7925, Nov 15 1997.
[32] C. Sheng, Z. Yajun, H. Qijun, W. Hao, and W. Gaofeng, "Effects of vacancy defects on graphene nanoribbon field effect transistor," Micro & Nano Letters, vol. 8, pp. 816-21, Nov. 2013.
[33] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, "Specific surface area of carbon nanotubes and bundles of carbon nanotubes," Carbon, vol. 39, pp. 507-514, 2001 2001.
[34] B. Panella, M. Hirscher, and S. Roth, "Hydrogen adsorption in different carbon nanostructures," Carbon, vol. 43, pp. 2209-2214, Aug 2005.
[35] X.-L. Wei, Y.-P. Chen, R.-Z. Wang, and J.-X. Zhong, "Studies on electrical properties of graphene nanoribbons with pore defects," Acta Physica Sinica, vol. 62, Mar 2013.
[36] Z. Chen, D. Higgins, H. Tao, R. S. Hsu, and Z. Chen, "Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications," Journal of Physical Chemistry C, vol. 113, pp. 21008-21013, Dec 10 2009.
[37] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis," Acs Nano, vol. 5, pp. 4350-4358, Jun 2011.
[38] H. T. Liu, Y. Q. Liu, and D. B. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, pp. 3335-3345, 2011.
|