進階搜尋


下載電子全文  
系統識別號 U0026-2407201314232600
論文名稱(中文) 全光纖被動鎖模雷射之研究
論文名稱(英文) Study on all-fiber passively mode-locked lasers
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 101
學期 2
出版年 102
研究生(中文) 張鈞翔
研究生(英文) Chun-Hsiang Chang
學號 Q16001262
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-蔡宗祐
口試委員-魏明達
口試委員-李志成
口試委員-方彥程
口試委員-林士廷
中文關鍵字 全光纖雷射系統  被動鎖模雷射  自鎖模雷射  非線性偏振旋轉  增益切換鎖模 
英文關鍵字 All-fiber laser system  Passively mode-locked lasers  Self-mode-locked lasers  Nonlinear polarization rotation  Gain-switched mode-locking 
學科別分類
中文摘要 在本論文中,我們以全光纖被動鎖模雷射為基礎來探討鎖模的相關原理與知識,也探究了鎖模雷射的量測儀器,如自相關儀。此外,我們設計與實驗了兩種鎖模雷射的架構。在第一個架構中,我們利用非線性偏振旋轉技術以製作偏振疊加波鎖模雷射;在第二個架構中,摻銩光纖透過增益切換來產生相似於Q切換鎖模的脈衝封包,此增益切換產生脈衝封包的現象,我們稱之為增益切換鎖模。我們應用在此雷射的概念是由模態場面積不匹配產生腔內聚焦,並利用高能量脈衝泵浦摻銩光纖而引發鎖模,故我們稱此雷射為摻銩光纖自鎖模雷射。
英文摘要 In this thesis, we adopted the basis of all-fiber passively mode-locked lasers to study the related principle and knowledge of mode-locking. The measuring instruments of mode-locked lasers, such as autocorrelator, are also discussed. Moreover, we designed and experimented on two structures of mode-locked laser. In the first structure, we used nonlinear polarization rotation technique to create a polarization additive-pulse mode-locked laser. In the second structure, the thulium-doped fiber through gain-switching to produce pulse envelope is similar to Q-switched mode-locking, so we named the phenomenon as gain-switched mode-locking. The concepts we applied in the laser are to induce intracavity focusing by mode-field-area mismatch and to use the pulses of high energy to pump thulium-doped fiber. As a result of the two concepts above, the laser is self-mode-locked. Therefore we called it thulium-doped fiber self-mode-locked laser.
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第1章 緒論 9
1.1 前言 9
1.2 研究目的與動機 17
參考文獻 19
第2章 原理 29
2.1 鎖模 29
2.1.1 鎖模原理 29
2.1.2 鎖模雷射 34
2.2 自相關 40
2.2.1 自相關原理 40
2.2.2 自相關儀量測與操作原理 44
參考文獻 47
第3章 偏振疊加波鎖模雷射 50
3.1 實驗架構 51
3.2 實驗結果 54
參考文獻 71
第4章 摻銩光纖自鎖模雷射 73
4.1 實驗架構 75
4.2 實驗結果 77
參考文獻 81
第5章 結論 84
5.1 研究成果 84
5.2 未來展望 85
參考文獻 87
參考文獻 第1章 緒論

[1] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, pp.1-4.
[2] Ursula Keller (2003), “Recent developments in compact ultrafast lasers,” Nature, 424 (6950) pp.831-838.
[3] R.L. Fork, B.I. Greene & C.V. Shank (1981), “GENERATION OFOPTICAL PULSES SHORTER THAN 0.1 PSEC BY COLLIDING PULSE MODE-LOCKING,” Applied Physics Letters, 38 (9) pp.671-672.
[4] J.A. Valdmanis, R.L. Fork & J.P. Gordon (1985), “GENERATION OF OPTICAL PULSES AS SHORT AS 27 FEMTOSECONDS DIRECTLY FROM A LASER BALANCING SELF-PHASE MODULATION, GROUP-VELOCITY DISPERSION, SATURABLE ABSORPTION, AND SATURABLE GAIN,” Optics Letters, 10 (3) pp.131-133.
[5] P.F. Moulton (1986), “SPECTROSCOPIC AND LASER CHARACTERISTICS OF TI-AL2O3,” Journal of The Optical Society of America B-Optical Physics, 3 (1) pp.125-133.
[6] D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow & T. Tschudi (1999), “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Optics Letters, 24 (9) pp.631-633.
[7] U. Morgner, F.X. Kartner, S.H. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow & T. Tschudi (1999), “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : sapphire laser,” Optics Letters, 24 (6) pp.411-413.
[8] A. Chamorovskiy, Y. Chamorovskiy, I. Vorob'ev & O.G. Okhotnikov (2010), ‘‘95-Femtosecond Suspended Core Ytterbium Fiber Laser,’’ IEEE Photonics Technology Letters, 22 (17) pp.1321-1323.
[9] R. Herda, S. Kivisto, O.G. Okhotnikov, A.F. Kosolapov, A.E. Levchenko, S.L. Semjonov & E.M. Dianov (2008), ‘‘Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber,’’ IEEE Photonics Technology Letters, 20 (1-4) pp.217-219.
[10] B. Ortac, M. Ploetner, T. Schreiber, J. Limpert & A. Tunnermann (2007), ‘‘Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,’’ Optics Express, 15 (23) pp.15595-15602.
[11] X.L. Tian, M. Tang, P.P. Shum, Y.D. Gong, C.L. Lin, S.N. Fu & T.S. Zhang (2009), ‘‘High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,’’ Optics Letters, 34 (9) pp.1432-1434.
[12] L. Orsila, R. Herda & O.G. Okhotnikov (2007), ‘‘Monolithic fiber mirror and photonic crystal technology for high repetition rate all-fiber soliton lasers,’’ IEEE Photonics Technology Letters, 19 (21-24) pp.2009-2011.
[13] X.M. Liu, J. Laegsgaard & D. Turchinovich (2010), ‘‘Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,’’ Optics Letters, 35 (7) pp.913-915.
[14] O. Katz & Y. Sintov (2008), ‘‘Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,’’ Optics Letters, 281 (10) pp.2874-2878.
[15] R. Gumenyuk, C. Thur, S. Kivisto & O.G. Okhotnikov (2010), ‘‘Tapered Fiber Bragg Gratings for Dispersion Compensation in Mode-Locked Yb-Doped Fiber Laser,’’ IEEE Journal of Quantum Electronics, 46 (5) pp.769-773.
[16] C.M. Quyang, P. Shum, H.H. Wang, S.N. Fu, X.P. Cheng, J.H. Wang & X.L. Tian (2011), ‘‘Wavelength-Tunable High-Energy All-Normal-Dispersion Yb-Doped Mode-Locked All-Fiber Laser with a HiBi Fiber Sagnac Loop Filter,’’ IEEE Journal of Quantum Electronics, 47 (2) pp.198-203.
[17] M. Zhang, E.J.R. Kelleher, E.D. Obraztsova, S.V. Popov & J.R. Taylor (2011), ‘‘Nanosecond Pulse Generation in Lumped Normally Dispersive All-Fiber Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 23 (19) pp.1379-1381.
[18] Y.S. Fedotov, S.M. Kobtsev, R.N. Arif, A.G. Rozhin, C. Mou & S.K. Turitsyn (2012), ‘‘Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,’’ Optics Express, 20 (16) pp.17797-17805.
[19] M.E.V. Pedersen, E.J.R. Kelleher, J.C. Travers, Z. Sun, T. Hasan, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser,’’ IEEE Photonics Journal, 4 (3) pp.1058-1064.
[20] K. Ozgoren & F.O. Ilday (2010), ‘‘All-fiber all-normal dispersion laser with a fiber-based Lyot filter,’’ Optics Letters, 35 (8) pp.1296-1298.
[21] X.H. Li, Y.S. Wang, W. Zhao, X.L. Liu, Y.G. Wang, Y.H. Tsang, W. Zhang, X.H. Hu, Z. Yang, C.X. Gao, C. Li & D.Y. Shen (2012), ‘‘All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser,’’ Journal of Lightwave Technology, 30 (15) pp.2502-2507.
[22] X.L. Liu, H.S. Wang, Z.J. Yan, Y.S. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X.H. Hu, X.H. Li, D.Y. Shen, C. Li & G.D. Chen (2012), ‘‘All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45 degrees-tilted fiber grating,’’ Journal of Lightwave Technology, 20 (17) pp.19000-19005.
[23] M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner & D. Kracht (2008), ‘‘All-fiber ytterbium femtosecond laser without dispersion compensation,’’ Optics Express, 16 (24) pp.19562-19567.
[24] A.V. Ivanenko, S.M. Kobtsev & S.V. Kukarin (2010), ‘‘Femtosecond Ring All-Fiber Yb Laser with Combined Wavelength-Division Multiplexer-Isolator,’’ Laser Physics, 20 (2) pp.344-346.
[25] P.Z. Zhang, W. Fan, X.C. Wang & Z.Q. Lin (2010), ‘‘Generation of 8.5-nJ pulse from all-fiber dispersion compensation-free Yb-doped laser,’’ Chinese Optics Letters, 8 (8) pp.768-770.
[26] C.H. Tu, W.G. Guo, Y.N. Li, S.G. Zhang & F.Y. Lu (2007), ‘‘Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,’’ Optics Communications, 280 (2) pp.448-492.
[27] D. Mortag, D. Wandt, U. Morgner, D. Kracht & J. Neumann (2011), ‘‘Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 μm,’’ Optics Express, 19 (2) pp.546-551.
[28] Z.X. Zhang, Z.W. Xu & L. Zhang (2012), ‘‘Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,’’ Optics Express, 20 (24) pp.26736-26742.
[29] C. Aguergaray, N.G.R Broderick, M. Erkintalo, J.S.Y. Chen & V. Kruglov (2012), ‘‘Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,’’ Optics Express, 20 (10) pp.10545-10551.
[30] A.V. Avdokhin, S.V. Popov & J.R. Taylor (2003), ‘‘Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,’’ Optics Express, 11 (3) pp.265-269.
[31] S. Kivisto, R. Gumenyuk, J. Puustinen, M. Guina, E.M. Dianov & O.G. Okhotnikov (2009), ‘‘Mode-Locked Bi-Doped All-Fiber Laser With Chirped Fiber Bragg Grating,’’ IEEE Photonics Technology Letters, 21 (9-12) pp.599-601.
[32] E.J.R. Kelleher, J.C. Travers, Z. Sun, A.C. Ferrari, K.M. Golant, S.V. Popov & J.R. Taylor (2010), ‘‘Bismuth fiber integrated laser mode-locked by carbon nanotubes,’’ Laser Physics Letters, 7 (11) pp.790-794.
[33] A. -P. Luo, Z. -C. Luo, W. -C. Xu, V.V. Dvoyrin, V.M. Mashinsky & E.M. Dianov (2011), ‘‘Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,’’ Laser Physics Letters, 8 (8) pp.601-605.
[34] M. Zirngibl, L.W. Stulz, J. Stone, J. Hugi, D. Digiovanni & P.B. Hansen (1991), ‘‘1.2PS PULSES FROM PASSIVELY MODE-LOCKED LASER DIODE PUMPED ER-DOPED FIBER RING LASER,’’ Electronics Letters, 27 (19) pp.1734-1735.
[35] C. Mou, S. Sergeyev, A. Rozhin & S. Turistyn Zhang (2011), ‘‘All-fiber polarization locked vector soliton laser using carbon nanotubes,’’ Optics Letters, 36 (19) pp.3831-3833.
[36] N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura & K. Itoh (2008), ‘‘All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,’’ Optics Express, 16 (13) pp.9429-9435.
[37] K. Kieu & M. Mansuripur (2007), ‘‘Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,’’ Optics Letters, 32 (15) pp.2242-2244.
[38] S.Y. Choi, F. Rotermund, H. Jung, K. oh & D. -I. Yeom (2009), ‘‘Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,’’ Optics Letters, 17 (24) pp.21788-21793.
[39] J.Z. Wang, Z.Q. Luo, M. Zhou, C.C. Ye, H.Y. Fu, Z.P. Cai, H.H. Cheng, H.Y. Xu & W. Qi (2012), ‘‘Evanescent-Light Deposition of Graphene Onto Tapered Fibers for Passive Q-Switch and Mode-Locker,’’ IEEE Photonics Journal, 4 (5) pp.1295-1305.
[40] Y. -W. Song, S. -Y. Jang, W. -S. Han & M. -K. Bae (2010), ‘‘Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,’’ Applied Physics Letters, 96 (5).
[41] J. Xu, J. Liu, S.D. Wu, Q. -H. Yang & P. Wang (2012), ‘‘Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,’’ Optics Express, 20 (14) pp.15474-15480.
[42] A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich & D. Kracht (2005), ‘‘0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses,’’ Optics Express, 13 (16) pp.6305-6309.
[43] C.B. Mou, H. Wang, B.G. Bale, K.M. Zhou, L. Zhang & I. Bennion (2010), ‘‘All-fiber passively mode-locked femtosecond laser using a 45 degrees-tilted fiber grating polarization element,’’ Optics Express, 18 (18) pp.18906-18911.
[44] Z.X. Zhang, B. Oktem & F.O. Ilday (2010), ‘‘All-fiber-integrated soliton-similariton laser with in-line fiber filter,’’ Optics Letters, 37 (17) pp.3489-3491.
[45] J.S. Peng, L. Zhan, Z.C. Gu, K. Qian, X. Hu, S.Y. Luo & Q.S. Shen (2012), ‘‘Direct Generation of 4.6-nJ 78.9-fs Dissipative Solitons in an All-Fiber Net-Normal-Dispersion Er-Doped Laser,’’ IEEE Photonics Technology Letters, 24 (2) pp.98-100.
[46] C.M. Quyang, P.P. Shum, K. Wu, J.H. Wong, X. Wu, H.Q. Lam & S. Aditya (2012), ‘‘Dissipative Soliton (12 nJ) From an All-Fiber Passively Mode-Locked Laser With Large Normal Dispersion,’’ IEEE Photonics Journal, 3 (5) pp.881-887.
[47] J. Chen, D. -F. Jia, Y. -C. Wu, C. -L. Wang, Z. -Y. Wang & T. -X. Yang (2011), ‘‘Passively Mode-Locked Fiber Laser with a Sub-Megahertz Repetition Rate,’’ Chinese Physics Letters, 28 (11).
[48] Z.C. Luo, A.P. Luo, W.C. Xu, C.X. Song, Y.X. Gao & W.C. Chen (2009), ‘‘Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,’’ Laser Physics Letters, 6 (8) pp.582-585.
[49] G. -R. Lin, Y. -T. Lin & C. -K. Lee (2007), ‘‘Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier,’’ Optics Express, 15 (6) pp.2993-2999.
[50] N. Russo & R. Duchowicz (2010), ‘‘High frequency pulse trains from a self-starting additive pulse mode-locked all-fiber laser,’’ Optics Communications, 283 (1) pp.113-117.
[51] P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian & J.V. Moloney (2006), ‘‘All-fiber picosecond laser system at 1.5 mu m based on amplification in short and heavily doped phosphate-glass fiber,’’ IEEE Photonics Technology Letters, 18 (21-24) pp.2194-2196.
[52] A. Polynkin, P. Polynkin, D. Panasenko, M. Mansuripur, J. Moloney & N. Peyghambarian (2006), ‘‘Short-cavity, passively modelocked fibre laser oscillator at 1.5 mu m with 550 MHz repetition rate and high average power,’’ Electronics Letters, 42 (3) pp.157-159.
[53] A. Martinez & S. Yamashita (2011), ‘‘Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,’’ Optics Express, 19 (7) pp.6155-6163.
[54] A. Martinez & S. Yamashita (2012), ‘‘10 GHz fundamental mode fiber laser using a graphene saturable absorber,’’ Applied Physics Letters, 101 (4).
[55] X.M. Wei, S.H. Xu, H.C. Huang, M.Y. Peng & Z.M. Yang (2011), ‘‘Compact all-fiber ring femtosecond laser with high fundamental repetition rate,’’ Optics Express, 20 (22) pp.24607-24613.
[56] D. Panasenko, P. Polynkin, A. Polynkin, J.V. Moloney, M. Mansuripur & N. Peyghambarian (2006), ‘‘Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,’’ IEEE Photonics Technology Letters, 18 (5-8) pp.853-855.
[57] Z. -C. Luo, W. -C. Xu, C. -X. Song, A. -P. Luo, Y. -X. Gao, S. -H. Xu, Z. -M. Yang & W. -C. Chen (2008), ‘‘Self-Starting Passively Mode-Locked Er3+/Yb3+ Codoped Phosphate Glass All-Fibre Ring Laser,’’ Chinese Physics Letters, 25 (12) pp.4280-4282.
[58] Q.A. Fang, K. Kieu & N. Peyghambarian (2010), ‘‘An All-Fiber 2-mu m Wavelength-Tunable Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 22 (22) pp.1656-1658.
[59] M. Zhang, E.J.R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Tm-doped fiber laser mode-locked by graphene-polymer composite,’’ Optics Express, 20 (22) pp.25077-25084.
[60] Q. Wang, T. Chen, B. Zhang, A.P. Heberle & K.P. Chen (2011), ‘‘All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,’’ Optics Letters, 36 (19) pp.3750-3752.
[61] M.A. Chernysheva, A.A. Krylov, P.G. Kryukov & E.M. Dianov (2012), ‘‘Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser,’’ IEEE Photonics Technology Letters, 24 (14) pp.1254-1256.
[62] K. Kieu & F.W. Wise (2009), ‘‘Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber,’’ IEEE Photonics Technology Letters, 21 (1-4) pp.128-130.
[63] R. Kadel & B.R. Washburn (2012), ‘‘All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,’’ Applied Optics, 51 (27) pp.6465-6470.
[64] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, pp.3-4.

第2章 原理

[1] See the website: http://www.rp-photonics.com/mode_locking.html
[2] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, p.13.
[3] E.P. Ippen (1994), “PRINCIPLES OF PASSIVE-MODE LOCKING,” Applied Physics B-Lasers and Optics, 58 (3) pp.159-170.
[4] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, p.34.
[5] H.A. Haus (1975), “THEORY OF MODE-LOCKING WITH A FAST SATURABLE ABSORBER,” Journal of Applied Physics, 46 (7) pp.3049-3058.
[6] H.A. Haus (1975), “THEORY OF MODE-LOCKING WITH A SLOW SATURABLE ABSORBER,” IEEE Journal of Quantum Electronics, 11 (9) pp.736-746.
[7] See the website:
http://www.rp-photonics.com/passive_mode_locking.html
[8] H.A. Haus, E.P. Ippen & K. Tamura (1994), ‘‘Additive-Pulse Modelocking in Fiber Lasers,’’ IEEE Journal of Quantum Electronics, 30 (1) pp.200-208.
[9] H.A. Haus, J.G. Fujimoto & E.P. Ippen (1992), ‘‘Analytic Theory of Additive Pulse and Kerr Lens Mode Locking,’’ IEEE Journal of Quantum Electronics, 28 (10) pp.2086-2096.
[10] L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus & E.P. Ippen (1997), ‘‘Ultrashort-pulse fiber ring lasers,’’ Applied Physics B-Lasers and Optics, 65 (2) pp.277-294.
[11] M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober & A.J. Schmidt (1991), ‘‘Mode locking with cross-phase and self-phase modulation,’’ Optics Letters, 16 (7) pp.502-504.
[12] I.N. Duling (1991), ‘‘ALL-FIBER RING SOLITON LASER MODE-LOCKED WITH A NONLINEAR MIRROR,’’ Optics Letters, 16 (8) pp.539-541.
[13] W.J. Lai, P. Shum & L.N. Binh (1991), ‘‘NOLM-NALM fiber ring laser,’’ IEEE Journal of Quantum Electronics, 41 (7) pp.986-993.
[14] I.N. Duling, C.J. Chen, P.K.A. Wai & C.R. Menyuk (1994), ‘‘OPERATION OF A NONLINEAR LOOP MIRROR IN A LASER CAVITY,’’ IEEE Journal of Quantum Electronics, 30 (1) pp.194-199.
[15] J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus & E.P. Ippen (1989), ‘‘FEMTOSECOND PULSE GENERATION IN A LASER WITH A NONLINEAR EXTERNAL RESONATOR,’’ Optics Letters, 14 (1) pp.48-50.
[16] D.W. Huang, G.C. Lin & C.C. Yang (1999), ‘‘Fiber-grating-based self-matched additive-pulse mode-locked fiber lasers,’’ IEEE Journal of Quantum Electronics, 35 (2) pp.138-146.
[17] See the website:
http://www.rp-photonics.com/additive_pulse_mode_locking.html
[18] See the website: http://en.wikipedia.org/wiki/Optical_autocorrelation
[19] Femtochrome Research Inc., FR-103XL Autocorrelator Instruction Manual.
[20] Z.A. Yasa & N.M. Amer (1981) , ‘‘A Rapid-Scanning Autocorrelation Scheme for Continuous Monitoring of Picosecond Laser Pulses,’’ Optics Communications, 36 (5) pp.406 -408

第3章 偏振疊加波鎖模雷射

[1] J. Reichert, R. Holzwarth, T. Udem & T.W. Hansch (1999), “Measuring the frequency of light with mode-locked lasers,” Optics Communications, 172 (1-6) pp.59-68.
[2] T. Udem, R. Holzwarth, T.W. Hansch (2002), “Optical frequency metrology,” Nature, 416 (6877) pp.233-237.
[3] P.F. Curley, A.I. Ferguson, J.G. White & W.B. Amos (1992), “APPLICATION OF A FEMTOSECOND SELF-SUSTAINING MODE-LOCKED TI-SAPPHIRE LASER TO THE FIELD OF LASER SCANNING CONFOCAL MICROSCOPY,” Optical and Quantum Electronics, 24 (8) pp.851-859.
[4] U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson & M.T. Asom (1992), “SOLID-STATE LOW-LOSS INTRACAVITY SATURABLE ABSORBER FOR ND-YLF LASERS - AN ANTIRESONANT SEMICONDUCTOR FABRY-PEROT SATURABLE ABSORBER,” Optics Letters, 17 (7) pp.505-507.
[5] S. Tsuda, W.H. Knox, E.A. Desouza, W.Y. Jan & J.E. Cunningham (1995), “LOW-LOSS INTRACAVITY ALAS/ALGAAS SATURABLE BRAGG REFLECTOR FOR FEMTOSECOND MODE-LOCKING IN SOLID-STATE LASERS,” Optics Letters, 20 (12) pp.1406-1408.
[6] E.U. Rafailov, S.J. White, A.A. Lagatsky, A. Miller, W. Sibbett, D.A. Livshits, A.E. Zhukov & V.M. Ustinov (2004), “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photonics Technology Letters, 16 (11) pp.2439-2441.
[7] U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek & J.A. derAu (1996), “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 2 (3) pp.435-453.
[8] B. Braun, K.J. Weingarten, F.X. Kartner & U. Keller (1995), “CONTINUOUS-WAVE MODE-LOCKED SOLID-STATE LASERS WITH ENHANCED SPATIAL HOLE-BURNING,” Applied Physics B, 61 (5) pp.429-437.

第4章 摻銩光纖自鎖模雷射

[1] D.C. Hanna, I.M. Jauncey, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Suni, J.E. Townsend & A.C. Tropper (1988), ‘‘CONTINUOUS-WAVE OSCILLATION OF A MONOMODE THULIUM-DOPED FIBER LASER,’’ Electronics Letters, 24 (19) pp.1222-1223.
[2] D.C. Hanna, R.M. Percival, R.G. Smart & A.C. Tropper (1990), ‘‘EFFICIENT AND TUNABLE OPERATION OF A TM-DOPED FIBER LASER,’’ Optics communications, 75 (3-4) pp.283-286.
[3] W.L. Barnes & J.E. Townsend (1990), ‘‘HIGHLY TUNABLE AND EFFICIENT DIODE PUMPED OPERATION OF TM-3+ DOPED FIBER LASERS,’’ Electronics Letters, 26 (11) pp.746-747.
[4] J.F. Wu, Z. Yao, J. Zong & S.B. Jiang (2007), ‘‘Highly efficient high-power thulium-doped germanate glass fiber laser,’’ Optics Letters, 32 (6) pp.638-640.
[5] S.D. Jackson, A. Sabella & D.G. Lancaster (2007), ‘‘Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 mu m,’’ IEEE Journal of Selected Topics in Quantum, 13 (3) pp.567-572.
[6] G.D. Goodno, L.D. Book & J.E. Rothenberg (2009), ‘‘Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,’’ Optics Letters, 34 (8) pp.1204-1206.
[7] Q.A. Fang, K. Kieu & N. Peyghambarian (2010), ‘‘An All-Fiber 2-mu m Wavelength-Tunable Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 22 (22) pp.1656-1658.
[8] M. Zhang, E.J.R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Tm-doped fiber laser mode-locked by graphene-polymer composite,’’ Optics Express, 20 (22) pp.25077-25084.
[9] Q. Wang, T. Chen, B. Zhang, A.P. Heberle & K.P. Chen (2011), ‘‘All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,’’ Optics Letters, 36 (19) pp.3750-3752.
[10] M.A. Chernysheva, A.A. Krylov, P.G. Kryukov & E.M. Dianov (2012), ‘‘Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser,’’ IEEE Photonics Technology Letters, 24 (14) pp.1254-1256.
[11] Y.F. Chen & S.W. Tsai (2001), ‘‘Simultaneous Q-switching and mode-locking in a diode-pumped Nd : YVO4-Cr4+: YAG laser,’’ IEEE Journal of Quantum Electronics, 37 (4) pp.580-586.
[12] J. -H. Lin, H. -R. Chen, H. -H. Hsu, M. -D. Wei, K. -H. Lin & W. -F. Hsieh (2008), ‘‘Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,’’ Optics Express, 16 (21) pp.16538-16545.
[13] T. -Y. Tsai, Z. -C. Lee, H. -X. Tsao & S. -T. Lin (2012), ‘‘Lensless intracavity focusing in a passively Q-switched all-fiber laser using the mode-field-area mismatch,’’ Optics Letters, 37 (13) pp.2610-2612.
[14] G. Zhang, S.Z. Zhao, G.Q. Li, D.C. Li, K.J. Yang, K. Cheng & Y. Zhang (2010), ‘‘Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,’’ Applied Optics, 49 (24) pp.4524-4530.
[15] J. -H. Lin, K. -H. Lin, C. -C. Hsu, W.H. Yang & W. -F. Hsieh (2007), ‘‘Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd : GdVO4 laser,’’ Laser Physics Letters, 4 (6) pp.413-417.
[16] T. -Y. Tsai, Y. -C. Fang & S. -H Hung (2010), ‘‘Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,’’ Optics Express, 18 (10) pp.10049-10054.
[17] A.S. Kurkov, Ya. E. Sadovnikova, A.V. Marakulin & E.M. Sholokhov (2010), ‘‘All fiber Er-Tm Q-switched laser,’’ Laser Physics Letters, 7 (11) pp.795-797.
[18] S.D. Agger & J.H. Povlsen (2006), ‘‘Emission and absorption cross section of thulium doped silica fibers,’’ Optics Express, 14 (1) pp.50-57.

第5章 結論

[1] J. Fekete, A. Cserteg & R. Szipocs (2009) , ‘‘All-fiber, all-normal dispersion ytterbium ring oscillator,’’ Laser Physics Letters, 6 (1) pp.49-53.
[2] N.S. Shahabuddin, H. Mohamad, M.A. Mahdi, Z. Yusoff, H. Ahmad & S.W. Harun (2012) , ‘‘Passively mode-locked soliton fiber laser using a combination of saturable absorber and nonlinear polarization rotation technique,’’ Microwave and Optical Technology Letters, 54 (6) pp.1430-1432.
[3] K. -H. Lin, J. -H. Lin & C. -C. Chen (2010) , ‘‘Switchable mode-locking states in an all-fiber all-normal-dispersion ytterbium-doped laser,’’ Laser Physics, 20 (11) pp.1984-1989.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw