進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2407201215380000
論文名稱(中文) 顆粒性白血球刺激因子在阿茲海默氏症動物模式中引發幹細胞驅動的分子機制探討
論文名稱(英文) The molecular mechanism of G-CSF-induced stem cell mobilization in Alzheimer’s disease mouse model
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 100
學期 2
出版年 101
研究生(中文) 辜羿茹
研究生(英文) Yi-Ru Gu
學號 S96991067
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-蔡坤哲
召集委員-楊尚訓
口試委員-江伯敏
中文關鍵字 阿茲海默氏症  顆粒球生長激素  骨髓幹細胞 
英文關鍵字 AD  G-CSF  bone marrow stem cell 
學科別分類
中文摘要 顆粒球生長激素 (Granulocyte colony-stimulating factor,簡稱G-CSF) 是一種造血生長因子,其作用主要可以調控骨髓幹細胞 (Bone marrow stem cells,簡稱BMSCs) 的增殖 (proliferation) 和分化 (differentiation)。除此之外,顆粒球生長激素也可以驅動骨髓幹細胞至周邊血液當中。我們先前的研究中指出顆粒球生長激素不僅可以驅動骨髓幹細胞的釋放,亦能刺激阿茲海默氏症 (Alzheimers’s disease,簡稱AD ) 小鼠動物模式腦內類澱粉斑塊 (amyloid plaque) 周圍的神經新生 (neurogenesis),還能有效改善神經機能。
前人文獻中證實顆粒球生長激素所驅動的骨髓幹細胞可以有效治療中樞神經系統損傷和阿茲海默氏症。近期的研究也在腦中風的動物模式中發現顆粒球生長激素可以刺激受損腦區附近的神經新生。然而,顆粒球生長激素驅動骨髓幹細胞進入中樞神經的機制目前尚不明確。綜合前人的研究,我們欲了解顆粒球生長激素是否可以驅動骨髓幹細胞移動至腦內受損的區域,並且改善阿茲海默氏症小鼠模式的認知行為功能。
英文摘要 Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor named for its role in the proliferation and differentiation of bone marrow stem cells (BMSCs). Administration of G-CSF mobilized the BMSCs from bone marrow into the peripheral blood. In our previous studies, we found that G-CSF could induce stem cells release from the bone marrow, stimulate neurogenesis surrounding the amyloid β (Aβ) plaques in mouse brain, and it significantly improve the neurological function of the Alzheimer’s disease (AD) mice.
Previous publications showed that G-CSF-induced BMSCs migration could rescue the CNS injury and AD. Recently, G-CSF had even been used in stroke models, because it could induce neurogenesis near the damage area. But the mechanism of G-CSF-mediated migration of bone marrow-derived cells into CNS is still an open question. In this thesis, I want to evaluate whether G-CSF could promote the mobilization and migration of BMSCs into the brain damaged areas and the recovery of cognitive function in the AD mouse model.
論文目次 中文摘要 1
Abstract 2
Acknowledgement 3
Abbreviations 5
Background 9
Methods 14
Results 18
Discussion 23
References 31
Tables and Figure Legends 41
Appendix 55
Appendix 1. Chemicals 55
Appendix 2. Antibody 56
Appendix 3. Kits 56
參考文獻 Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J.M., Fike, J.R., Lee, H.O., Pfeffer, K., Lois, C., Morrison, S.J., and Alvarez-Buylla, A. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968-973.
Bacigalupo, A. (2004). Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 17, 387-399.
Bajetto, A., Bonavia, R., Barbero, S., Piccioli, P., Costa, A., Florio, T., and Schettini, G. (1999). Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73, 2348-2357.
Benilova, I., Karran, E., and De Strooper, B. (2012). The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15, 349-357.
Braak, H., and Braak, E. (1998). Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl 53, 127-140.
Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779.
Broxmeyer, H.E., Orschell, C.M., Clapp, D.W., Hangoc, G., Cooper, S., Plett, P.A., Liles, W.C., Li, X., Graham-Evans, B., Campbell, T.B., et al. (2005). Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201, 1307-1318.
Cao, X.Q., Arai, H., Ren, Y.R., Oizumi, H., Zhang, N., Seike, S., Furuya, T., Yasuda, T., Mizuno, Y., and Mochizuki, H. (2006). Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 99, 861-867.
Cheng, Z., Liu, X., Ou, L., Zhou, X., Liu, Y., Jia, X., Zhang, J., Li, Y., and Kong, D. (2008). Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther 22, 363-371.
Cogle, C.R., Yachnis, A.T., Laywell, E.D., Zander, D.S., Wingard, J.R., Steindler, D.A., and Scott, E.W. (2004). Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363, 1432-1437.
Connick, P., Patani, R., and Chandran, S. (2011). Stem cells as a resource for regenerative neurology. Pract Neurol 11, 29-36.
Corti, S., Locatelli, F., Strazzer, S., Salani, S., Del Bo, R., Soligo, D., Bossolasco, P., Bresolin, N., Scarlato, G., and Comi, G.P. (2002). Modulated generation of neuronal cells from bone marrow by expansion and mobilization of circulating stem cells with in vivo cytokine treatment. Exp Neurol 177, 443-452.
Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., Ishikawa, H., et al. (2004). Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113, 1701-1710.
Dickson, D.W. (1997). Neuropathological diagnosis of Alzheimer's disease: a perspective from longitudinal clinicopathological studies. Neurobiol Aging 18, S21-26.
Diederich, K., Sevimli, S., x00F, rr, H., sters, E., Hoppen, M., Lewejohann, L., Klocke, R., Minnerup, J., Knecht, S., et al. (2009). The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 29, 11572-11581.
Eglitis, M.A., and Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94, 4080-4085.
Flomenberg, N., Devine, S.M., Dipersio, J.F., Liesveld, J.L., McCarty, J.M., Rowley, S.D., Vesole, D.H., Badel, K., and Calandra, G. (2005). The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106, 1867-1874.
Giulian, D., and Ingeman, J.E. (1988). Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8, 4707-4717.
Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356.
Herzog, E.L., Chai, L., and Krause, D.S. (2003). Plasticity of marrow-derived stem cells. Blood 102, 3483-3493.
Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49.
Kalinkovich, A., Tavor, S., Avigdor, A., Kahn, J., Brill, A., Petit, I., Goichberg, P., Tesio, M., Netzer, N., Naparstek, E., et al. (2006). Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res 66, 11013-11020.
Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10, 698-712.
Kawada, H., Takizawa, S., Takanashi, T., Morita, Y., Fujita, J., Fukuda, K., Takagi, S., Okano, H., Ando, K., and Hotta, T. (2006). Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113, 701-710.
Kim, S., Honmou, O., Kato, K., Nonaka, T., Houkin, K., Hamada, H., and Kocsis, J.D. (2006). Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res 1123, 27-33.
Koda, M., Nishio, Y., Kamada, T., Someya, Y., Okawa, A., Mori, C., Yoshinaga, K., Okada, S., Moriya, H., and Yamazaki, M. (2007). Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 1149, 223-231.
Koistinaho, M., Ort, M., Cimadevilla, J.M., Vondrous, R., Cordell, B., Koistinaho, J., Bures, J., and Higgins, L.S. (2001). Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques. Proc Natl Acad Sci U S A 98, 14675-14680.
Kopen, G.C., Prockop, D.J., and Phinney, D.G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96, 10711-10716.
Kucia, M., Ratajczak, J., and Ratajczak, M.Z. (2005). Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97, 133-146.
Lachmund, A., Gehrke, D., Krieglstein, K., and Unsicker, K. (1994). Trophic factors from chromaffin granules promote survival of peripheral and central nervous system neurons. Neuroscience 62, 361-370.
Lapidot, T. (2001). Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci 938, 83-95.
Laske, C., Stellos, K., Eschweiler, G.W., Leyhe, T., and Gawaz, M. (2008a). Decreased CXCL12 (SDF-1) plasma levels in early Alzheimer's disease: a contribution to a deficient hematopoietic brain support? J Alzheimers Dis 15, 83-95.
Laske, C., Stellos, K., Stransky, E., Seizer, P., Akcay, O., Eschweiler, G.W., Leyhe, T., and Gawaz, M. (2008b). Decreased plasma and cerebrospinal fluid levels of stem cell factor in patients with early Alzheimer's disease. J Alzheimers Dis 15, 451-460.
Liles, W.C., Broxmeyer, H.E., Rodger, E., Wood, B., Hubel, K., Cooper, S., Hangoc, G., Bridger, G.J., Henson, G.W., Calandra, G., et al. (2003). Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728-2730.
Lindvall, O., and Kokaia, Z. (2010). Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest 120, 29-40.
Lu, D.-Y., Tang, C.-H., Yeh, W.-L., Wong, K.-L., Lin, C.-P., Chen, Y.-H., Lai, C.-H., Chen, Y.-F., Leung, Y.-M., and Fu, W.-M. (2009). SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613, 146-154.
Maler, J.M., Spitzer, P., Lewczuk, P., Kornhuber, J., Herrmann, M., and Wiltfang, J. (2006). Decreased circulating CD34+ stem cells in early Alzheimer's disease: Evidence for a deficient hematopoietic brain support? Mol Psychiatry 11, 1113-1115.
Marchesi, F., Monti, P., Leone, B.E., Zerbi, A., Vecchi, A., Piemonti, L., Mantovani, A., and Allavena, P. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64, 8420-8427.
Massengale, M., Wagers, A.J., Vogel, H., and Weissman, I.L. (2005). Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 201, 1579-1589.
Mateo, I., Llorca, J., Infante, J., Rodriguez-Rodriguez, E., Fernandez-Viadero, C., Pena, N., Berciano, J., and Combarros, O. (2007). Low serum VEGF levels are associated with Alzheimer's disease. Acta Neurol Scand 116, 56-58.
McCollum, M., Ma, Z., Cohen, E., Leon, R., Tao, R., Wu, J.Y., Maharaj, D., and Wei, J. (2010). Post-MPTP treatment with granulocyte colony-stimulating factor improves nigrostriatal function in the mouse model of Parkinson's disease. Mol Neurobiol 41, 410-419.
McGeer, P.L., and McGeer, E.G. (2002). Local neuroinflammation and the progression of Alzheimer's disease. J Neurovirol 8, 529-538.
McKercher, S.R., Torbett, B.E., Anderson, K.L., Henkel, G.W., Vestal, D.J., Baribault, H., Klemsz, M., Feeney, A.J., Wu, G.E., Paige, C.J., et al. (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15, 5647-5658.
Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., and McKercher, S.R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779-1782.
Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G.D., and Crain, B. (2003). Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A 100, 1364-1369.
Murphy, G.M., Jr., Yang, L., and Cordell, B. (1998). Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 273, 20967-20971.
Parachikova, A., and Cotman, C. (2007). Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiol Dis 28, 143-153.
Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3, 687-694.
Pitzer, C., Kruger, C., Plaas, C., Kirsch, F., Dittgen, T., Muller, R., Laage, R., Kastner, S., Suess, S., Spoelgen, R., et al. (2008). Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain 131, 3335-3347.
Pollari, E., Savchenko, E., Jaronen, M., Kanninen, K., Malm, T., Wojciechowski, S., Ahtoniemi, T., Goldsteins, G., Giniatullina, R., Giniatullin, R., et al. (2011). Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 8, 74.
Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247-256.
Sanchez-Ramos, J., Song, S., Sava, V., Catlow, B., Lin, X., Mori, T., Cao, C., and Arendash, G.W. (2009). Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice. Neuroscience 163, 55-72.
Schneider, A., Kr, x00Fc, ger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., et al. (2005a). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098.
Schneider, A., Kuhn, H.G., and Schabitz, W.R. (2005b). A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle 4, 1753-1757.
Shin, J.W., Lee, J.K., Lee, J.E., Min, W.K., Schuchman, E.H., Jin, H.K., and Bae, J.S. (2011). Combined Effects of Hematopoietic Progenitor Cell Mobilization from Bone Marrow by Granulocyte Colony Stimulating Factor and AMD3100 and Chemotaxis into the Brain Using Stromal Cell-Derived Factor-1alpha in an Alzheimer's Disease Mouse Model. Stem Cells 29, 1075-1089.
Shyu, W.-C., Lin, S.-Z., Yang, H.-I., Tzeng, Y.-S., Pang, C.-Y., Yen, P.-S., and Li, H. (2004). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110, 1847-1854.
Sigurjonsson, O.E., Perreault, M.C., Egeland, T., and Glover, J.C. (2005). Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci U S A 102, 5227-5232.
Solaroglu, I., Jadhav, V., and Zhang, J.H. (2007). Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12, 712-724.
St, x00E, phan, A., Laroche, S., and Davis, S. (2001). Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21, 5703-5714.
Stumm, R.K., Rummel, J., Junker, V., Culmsee, C., Pfeiffer, M., Krieglstein, J., x00F, llt, V., and Schulz, S. (2002). A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22, 5865-5878.
Tsai, K.-J., Tsai, Y.-C., and Shen, C.-K.J. (2007). G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J Exp Med 204, 1273-1280.
Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Bjorklund, A., and Gage, F.H. (1986). Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A 83, 9231-9235.
Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 364-370.
Yan, J.J., Cho, J.Y., Kim, H.S., Kim, K.L., Jung, J.S., Huh, S.O., Suh, H.W., Kim, Y.H., and Song, D.K. (2001). Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133, 89-96.
Zhao, Y., Glesne, D., and Huberman, E. (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A 100, 2426-2431.
Zhou, B., Han, Z.C., Poon, M.C., and Pu, W. (2007). Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment. Med Hypotheses 68, 1268-1271.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw