進階搜尋


下載電子全文  
系統識別號 U0026-2407201115500400
論文名稱(中文) 失效放大因子在壽命測試中的角色探討
論文名稱(英文) The Roles of the Failure Amplification Factors in Lifetime Experiments
校院名稱 成功大學
系所名稱(中) 統計學系碩博士班
系所名稱(英) Department of Statistics
學年度 99
學期 2
出版年 100
研究生(中文) 吳萱萱
研究生(英文) Hsuan-Hsuan Wu
學號 r26981156
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-鄭順林
口試委員-高正雄
口試委員-陳瑞斌
中文關鍵字 失效放大方法  加速測試  互補式金屬氧化物半導體  建模  因子效應 
英文關鍵字 Failure Amplification Method  Accelerated Tests  CMOS  Model Building  Factor E ffect 
學科別分類
中文摘要 加速壽命測試被廣泛應用於製造業,目的是為了能夠即時地得到產品的可靠度訊息。但是,在某些情況下,加速壽命測試中仍然不足以滿足需求。Joseph and Wu 在2004年提供另一種方法 - 失效放大方法(FAME),用來處理一些實驗後分類資料缺乏足夠資訊的問題。其基本想法是選擇一些在產品或製程上的物理知識與失效之間關係已知的因子。這些因子可以被用來放大失敗的機率,使得實驗中的訊息最大化。

在以前的研究中,只有少數幾個研究在壽命實驗上的失效放大因子。
在這篇論文中,我們討論失效放大因子在壽命實驗中的角色。我們考慮
幾個具有失效放大因子的例子,其中一些例子的失效放大因子在以前的研究中已被說明,但特別是在壽命測試實驗中,到目前為止仍有一些尚未被討論過。

本文主要的貢獻在四個方面的討論:因子的物理意義,建立模型的過程,模型中的因子效應以及統計推斷。我們利用幾個簡略的例子及一個詳盡說明的例子(互補式金屬氧化物半導體設備)討論因子的角色。我們確認了失效放大因素通常是設備的規格或是在生產時或使用過程中,嚴重影響失效的因子。而這些因子在建立模型的過程應該被優先考慮。透過一些例子,我們列出在模型中,失效放大因子可能對失效產生的因子效應為何。我們也說明了在不同情況的壽命實驗中,對統計推論需要經由對失效放大因子進行外插或是平均。
英文摘要 In order to obtain the timely information on the reliability of a product, accelerated life tests (ALTs) are widely used in manufacturing industries. However, in certain situations, acceleration tests are still not enough to meet the purpose. Joseph and Wu (2004) provided another framework - failure amplification method (FAMe) in dealing with the problem of lacking sufficient information after a experiment with categorical data. The basic idea of FAMe is to select factors with known effect on the failures based on physical knowledge of the product or process. These factors can then be used to amplify the failure probability so as to maximize the information in the experiment. In previous studies, there is few research of the failure amplification factors in the lifetime experiment. In this thesis, we discuss the roles of failure amplification factors in the lifetime experiment. We consider several cases with failure amplification factors, some of them were illustrated in previous studies, but some of them were not pointed out so far, especially in life time experiment.
The main contribution of thesis is the discussion on four aspects: physical meaning of factors, model building process, factor effects in the model, and the statistical inference. We give several examples briefly and one example (CMOS device) in details to illustrate the roles of factors. We identify that the failure amplification factors are usually the specifications of the device or the significant factors in manufacturing or using process. These factors should be considered first in the model building process. Through the cases, we list the possible effects of the failure amplification factors in the model. We also explain the situation when the average or extrapolation over the levels of the failure amplification factors is needed in the statistical inference of the lifetime experiments.
論文目次 1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Life Acceleration Factor . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Failure Amplification Method . . . . . . . . . . . . . . . . . . . 2
1.2.3 Modeling for Failure Amplification Method . . . . . . . . . . . . 3
1.3 Thesis Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. CASES WITH FAILURE AMPLIFICATION FACTORS : : : : : : : : : : : : 5
2.1 Cases Identified in the Literature . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Experiment on the Copier Machines . . . . . . . . . . . . . . . . 5
2.1.2 Experiment on Printed Circuited Board (PCB) . . . . . . . . . . 8
2.1.3 Experiment on Electroplating Process . . . . . . . . . . . . . . . 15
2.1.4 Experiment on Heat Sealing of Container Lids . . . . . . . . . . 15
2.1.5 Experiment on Litho-Printing . . . . . . . . . . . . . . . . . . . 15
2.2 Cases Not Identified in the Literature . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Experiment on HfSiON Gate Dielectric Silicon MOS Devices . . 16
2.2.2 Experiment on Ultra-Thin Gate Oxides . . . . . . . . . . . . . . 18
2.2.3 Experiment on Downscaled CMOS . . . . . . . . . . . . . . . . 21
3. THE ROLES OF FAILURE AMPLIFICATION FACTOR : : : : : : : : : : : : 24
3.1 Control, Noise and Life Acceleration Factors . . . . . . . . . . . . . . . 24
3.1.1 Factors and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Control Factors and Noise (hard to control) Factors . . . . . . . . 26
3.1.3 Modeling Strategy and Inference for Noise Factor . . . . . . . . . 27
3.1.4 Modeling Strategy and Inference for Life Acceleration Factor . . 28
3.2 Physical Meaning of Failure Amplification Factor . . . . . . . . . . . . . 29
3.2.1 Cases in 2.1: Cases Identified in the Literature . . . . . . . . . . 30
3.2.2 Cases in 2.2: Cases Not Identified in the Literature . . . . . . . . 31
3.3 Model Building of Failure Amplification Factor . . . . . . . . . . . . . . 33
3.3.1 Cases in 2.1: Cases Identified in the Literature . . . . . . . . . . 34
3.3.2 Cases in 2.2: Cases Not Identified in the Literature . . . . . . . . 35
3.4 Factor E ect of Failure Amplification Factor . . . . . . . . . . . . . . . . 49
3.4.1 Location E ect . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Scale E ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Location and Scale E ect . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Other Relationship with Product Life Time . . . . . . . . . . . . 53
3.5 Statistical Inference and Test Planning . . . . . . . . . . . . . . . . . . . 54
3.5.1 Life Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Life Time Prediction . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Factor Level Selection . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.4 Test Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : : 61
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
參考文獻 [1] Alamo, J. A. del and Joh J. (2009), “GaN HEMT Reliability,” Microelectronics Reliability, 49, 1200–1206.
[2] Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2005), Statistics for Experimenters: Design, Innovation and Discovery, 2nd ed, John Wiley & Sons.
[3] Cester, A., Cimino, S., Miranda, E., Candelori, A., Ghidini, G., and Paccagnella, A. (2004), “Statistical Model for Radiation-Induced Wear-Out of Ultra-Thin Gate Oxides After Exposure to Heavy Ion Irradiation,” Transaction on Nuclear Science, 50, 2167–2175.
[4] Choi, Y. S., Park, H., Nishida, T., and Thompson, S. E.(2009), “Reliability of HfSiON Gate Dielectric Silicon MOS Devices under [110] Mechanical Stress: Time Dependent Dielectric Breakdown,” Journal of Applied Physics, 105, 445030–445035.
[5] Chowdhury, D., Reynaert, P., and Niknejad, A. M.(2008), “A 60GHz 1V +12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS,” IEEE International Solid-State Circuits Conference, 8, 559–561.
[6] Grollitsch,W., and Nonis, R., and Dalt, N. D. (2010), “A 1.4psrms-Period-Jitter TDC-Less Fractional-N Digital PLL with Digitally Controlled Ring Oscillator in 65nm CMOS,” IEEE International Solid-State Circuits Conference, 1, 478–480.
[7] Hicks, Charles R. and Turner, Kenneth V. (2000), Fundamental Concepts in the Design of Experiments, 5th ed., The American Statistician.
[8] Hsiao, S. F., Tsai, M. Y., and Wen, C. S. (2010), “Low Area/Power Synthesis Using Hybrid Pass Transistor/CMOS Logic Cells in Standard Cell-Based Design Environment,” IEEE Transactions on Circuits and Systems – II: Express Briefs, 57, 21–25.
[9] Hsieh, M. H. and Jeng, S. L. (2007), “Accelerated Discrete Degradation Models for Leakage Current of Ultra-Thin Gate Oxides,” IEEE Transactions on Reliability, 56, 369–380.
[10] Jeng, S. L., Joshph, V. R., and Wu, C. F. Je_ (2008), “Modeling and Analysis Strategies for Failure Amplification Method,” IEEE Electron Devices Society, 40, 128–139.
[11] Joshph, V. R. and Wu, C. F. Je_ (2004), “Failure Amplification Method: An Information Maximization Approach to Categorical Response Optimization,” Technometrics, 46, 1–24.
[12] Kulkarni, V. V., Muqsith, M., Niitsu, K., Ishikuro, H., and Kuroda, T. (2009), “A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB Transmitter With Embedded On-Chip Antenna,” IEEE Journal of Solid-State Circuits, 44, 394–403.
[13] Lee, K. W., Kim, K. H., Kim, J. Y., Kim, K. H., Choi, B. H., and Kwon, D. (2009), “Safety Assessment Based on Mapping of Degraded Mechanical Properties of Materials for Power Plant Pipeline Using Instrumented Indentation Technique,” Journal of Loss Prevention in the Process Industries, 527, 868–872.
[14] Lu, B. T., Qiao, L. J., Luo, J. L., and Gao, K. W. (2011), “Role of Hydrogen in Stress Corrosion Cracking of Austenitic Stainless Steels,” Philosophical Magazine, 91, 208–228.
[15] Lwin, Z. Z., Pey, K. L. , and Chen, Y. N. (2010), “Charging and Discharging Characteristics of Metal Nanocrystals in Degraded Dielectric Stacks,” Technometrics, 10, 89–93.
[16] Maruthi, B. N., and Joseph, V. R. (1999), “Improving the Yield of Printed Circuit Boards Using Design of Experiments,” Quality Engineering, 12, 259–265.
[17] Mccullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd ed., Chapman and Hall, London.
[18] Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data, John Wiley & Sons.
[19] Miyakawa, M. (1993), “Logistic Regression Analysis for Obsreations from the Operating Window Method,” Technical Report IA-TR-93-4, Science University of Tokyo, Japan.
[20] Miyazaki, H., Kodama, D., and Suzumura, N.(2009), “Phenomenological Classification of Stress-Induced Leakage Current and Time-Dependent Dielectric Breakdown Mechanism,” Journal of Applied Physics, 106, 1041030–1041038.
[21] Montgomery, D. C. (2005), Design and Analysis of Experiments, 6th ed., John Wiley &Sons.
[22] Morifuji, E. (2009), “Impact of Mechanical Stress on Hot-Carrier Lifetime and Time-Dependent Dielectric Breakdown in Downscaled Complimentary MetalVOxideVSemiconductor,” Japanese Journal of Applied Physics, 48, 0212060–0212065.
[23] Nelson, W. (1990a), Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley & Sons.
[24] Niitsu, K., Shimazaki, Y., Sugimori, Y., Kohama, Y., Kasuga, K., Nonomura, I., Sean, M., Komatsu, S., Osada, K., Irie, N., Hattori, T., Hasegawa, A., and Kuroda, T. (2009), “An Inductive-Coupling Link for 3D Integration of a 90nm CMOS Processor and a 65nm CMOS SRAM,” IEEE International Solid-State Circuits Conference, 1, 479–481.
[25] Przyborowski, D., and Idzik, M. (2010), “A 10-bit Low-Power Small-Area High-Swing CMOS DAC,” IEEE Transactions on Nuclear Science, 57, 292–299.
[26] Ray, A. K., Bose, S. C., De, P. K., and Das, D. K. (2010), “Lifetime Evaluation of A Thick Thermal Barrier Coated Superalloy Used in Turbine Blade,” Materials Science and Engineering A, 527, 5474–5483.
[27] Su˜n´e, J., Mura, G., and Miranda, E. (2000), “Are soft breakdown and hard breakdown of ultrathin gate oxides actually diffierent failure mechanisms?,” IEEE Electron Device Letters, 21, 167–169.
[28] Tran, N., Lee, B., and Lee, J. W. (2007), “Development of Long-Range UHF-band RFID Tag chip Using Schottky Diodes in Standard CMOS Technology,” IEEE Radio Frequency Integrated Circuits Symposium, 1, 281–284.
[29] Viertl, R. (1988), Statistical Methods in Accelerated Life Testing, ” G¨ottinggen: Vandenhoeck and Ruprecht.
[30] Wakai, N. and Kobira, Y. (2009), “Consideration for CDM Breakdown and Reliability Designing in the Latest Semiconductor Technology,” Reliability and Maintainability Symposium, 22, 509–514.
[31] Wu, C. F. J. and Hamada, M. S. (2009), Experiments: Planning, Analysis, and Optimization, 2nd ed., John Wiley & Sons
[32] Xie, J., Lee, C., and Feng, H. (2010), “Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators,” Journal of Microelectromechanical Systmes, 19, 317–324.
[33] Yang, S. M., Lee, T., and Cong, M. (2010), “Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process,” Elsevier Sensors and Actuators A, 157, 258–266.
[34] Yu, I. T. and Joshph, V. R. (2010), “Bayesian Process Optimization Using Failure Amplification Method,” Applied Stochastic Models in Business and Industry, 49, 1200–1206.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw